Organ-on-a-Chip Model for COVID-19

Matthew, Vincent, Emma and Sara
Background: COVID-19

- Coronavirus family: single-stranded RNA viruses
 - COVID-19: surrounded by lipid envelope with spiked proteins
- Characterized by: fever, cough, and other constitutional symptoms
- Mainly spread through droplet infection
- Unknown how long it can survive on surfaces
The Lungs

- Lined with epithelial cells as a protective layer for alveoli (air sacs)
- Membrane of epithelial cells contains ACE2 Receptors, which connect to coronavirus to transmit genetic material
 - Lower airways contain more ACE2 Receptors
- Genetic material adopted by epithelial cells, instructions to replicate, cell destruction releases more copies of the virus to infect other cells
Immune System

- Works to fight infected epithelial cells
- Communicates via cytokines
- Overactive immune response causes killing of both healthy and infected cells
- Cytokine storm -> killing of too many epithelial cells -> alveoli more susceptible to infection by bacteria -> pneumonia -> death
Current Gaps in COVID-19 Research

- Environmental effects on COVID-19 (such as weather and temperature)
- Survival on surfaces
- Transmission factors (ie. food, alternate hosts)
- Treatments
- Vaccinations
Why Organ-on-a-Chip Model for COVID-19?

- Difficult to parse mechanisms of disease pathology in human clinical trials, which are still not well understood
- Clinical trials often more expensive and can have longer timescales
- Single cell *in vitro* models don’t recapitulate *in vivo* complexity
 - Particularly lung airway-microvascular interface
- Can analyze cellular effects both individually and collectively
- Animal models may not match human physiology
Lung-on-a-Chip Models

Huh et al., 2010

“Small airway-on-a-chip”, Benham et al., 2015

Sellgren et al., 2014

Park et al. 2018
Lung-on-a-chip models: Pathology

Pulmonary Edema Model. **Huh et al., 2012.**

“Small airway-on-a-chip”, **Benham et al., 2015**

Viral mimic: Polyinosinic polycytidylic acid (poly(I:C)) **Benham et al. 2016**

Human Rhinovirus-induced Asthma Model. **Villenave et al., 2017**
Current Limitations/Innovation

● Potential hydrophobic drug absorption from PDMS
● Membrane interface is often limited
 ○ Polyester needs to be coated
 ○ Typically too thin (basement membrane >>>10 microns)
 ○ Doesn’t match ECM mechanical properties
● Some systems (e.g. Benam et al.) don’t include a breathing mechanism
● No simulation of upper respiratory tract
● **To date, there is no current COVID-19-specific application of lung-on-a-chip or organ-on-a-chip**
COVID-19 Organ-on-a-Chip: Design Parameters

<table>
<thead>
<tr>
<th>Microfluidic chip material</th>
<th>Cells</th>
<th>Membrane material</th>
<th>Breathing mechanism</th>
<th>Channel design</th>
</tr>
</thead>
</table>
| PDMS w/ PEG-grafted channels | ● Human airway epithelial cells
● Human pulmonary microvascular endothelial cells | Matrigel+ Type I Collagen | Apply cyclic vacuum to hollow channels (10% cyclic strain at 0.2 Hz) | Two separate chips in series. One with a single wider channel (*Upper Respiratory Tract or URT*) and one with two branched smaller channels (*Lower Respiratory Tract or LRT*) |

- Biocompatible, optically transparent, **avoids absorption of small molecules**, tunable mechanical properties
- Primary cells are preferable, and been used in previous lung-on-a-chip models
- Matrigel+Type I Collagen= Better cell attachment and ECM mimicry.
- From *Huh et al. 2012.*
- Simulates upper and lower respiratory tracts.
COVID-19 Organ-on-a-Chip: URT Device Fabrication

- Stereolithography to make the chip parts out of PDMS with specified channels

- **Epithelial chip** has one large channel with breathing channels
 - Main channels: **4 mm wide x 1 mm high**
 - Breathing channels: **1 mm wide x 1 mm high**

- **Hydrogel chip** has one large channel
 - **3 mm wide x 0.5 mm high**

- **Bottom chip** has one large channel with breathing channels
 - Main channels: **4 mm wide x 0.2 mm high**
 - Breathing channels: **1 mm wide by 0.2 mm high**
 - No cells will be seeded on these chip channels, just for media flow to the other chip
COVID-19 Organ-on-a-Chip: LRT Device Fabrication

- Stereolithography to make the chip parts out of PDMS with specified channels
- **Epithelial chip** has two small branched channels with breathing channels
 - Main channels: 1.5 mm wide x 1 mm high
 - Breathing channels: 1 mm wide x 1 mm high
- **Hydrogel chip** has two small branched channels
 - 1 mm wide x 0.5 mm high
- **Endothelial chip** has two small branched channels with breathing channels
 - Main channels: 1.5 mm wide x 0.2 mm high
 - Breathing channels: 1 mm wide by 0.2 mm high
COVID Organ-on-a-Chip: Chip Modification and Assembly

- Oxygen plasma treat all three chip pieces (both URT and LRT)
 - PEG-Silane into epithelial and endothelial channels → PEG grafting
 - Fibronectin coating for hydrogel channel
 - Better hydrogel adhesion
 - Bind three microfluidic pieces together after channel modifications (both URT and LRT)
Hydrogel Insertion
- Inject Matrigel+Type I Collagen gel into fibronectin coated middle channels
- Polymerize at 37°C for 1 hour
- Hydrate overnight with media

Hollow Channel Development
- Flow etchant solution through breathing chambers to remove PDMS layer from the middle hydrogel chip.
 - Tetrabutyl-ammonium fluoride
 - N-methylpyrrolidinone
COVID-19 Organ-on-a-chip: URT Tissue Development

Seed epithelial cells
- 3.5×10^5 cells/cm2 seeding density on hydrogel membrane
- Constant flow through both epithelial endothelial for 4-5 days to reach confluency

Epithelial Cell Differentiation
- Remove liquid from top channel to create air-liquid interface
- **Differentiation into mucociliary epithelium** at 3-5 weeks
- Some squamous differentiation may occur
COVID-19 Organ-on-a-Chip: LRT Tissue Development

Seed epithelial cells
- $3.5 \times 10^5 \text{ cells/cm}^2$ seeding density on hydrogel membrane
- Constant flow through both epithelial endothelial for 4-5 days to reach confluency

Epithelial Cell Differentiation
- Remove liquid from top channel to create air-liquid interface
- 3 ug/mL retinoic acid to bottom channel media to prevent squamous differentiation
- **Differentiation into mucociliary bronchiolar epithelium** at 3-5 weeks

Endothelialization
- After epithelial differentiation, seed $2 \times 10^5 \text{ cells/cm}^2$ endothelial cells on bottom channel surface
- Confluency after 3-6 days of media flow
COVID-19 Organ-on-a-chip: Synthesis

- After cell seeding and differentiation, connect URT and LRT microfluidic systems
 - Fluid connections via sterile Tygon tubing
 - Vacuum connectors

- Maintain physiological flow rates for air and media (~100-200 µL/min)
COVID-19 Organ-on-a-Chip: Validation

- Hoescht live/dead test
- Immunostaining for relevant cell markers
 - ACE2 receptors
 - β-tubulin IV (epithelial cilia markers)
 - Aquaporin 5
 - VE-cadherin
 - DAPI
- Barrier integrity test
 - FITC-dextran test, as seen in Sellgren et al.
COVID-19 Organ-on-a-Chip: Applications

- Studying early onset effects of the infection
 - COVID-19 effects on lung system
 - Effects of factors from cytokine storm (e.g. Il-1, Il-6, Il-17)
 - Edema (presence of fluid in epithelial barrier)
 - Change in barrier function
 - Gas transport across alveolar-capillary barrier
 - Identifying disease biomarkers
- Screening RNA vaccines
 - Direct transfection to the cells
 - Production of RNA/DNA vaccines from infected cells
COVID-19 Organ-on-a-Chip: Limitations

- Requires two separate chips
- Not including a lymphatic system for drainage
- Doesn’t account for potential systemic effects
 - E.g. Liver
- Bronchioles can be as large as 5 mm
- Does not measure impact of virus on immune cells; only impact of immune response on lung cells
References

Questions?