Solid State Power Switching

Prof. Steven S. Saliterman
Introductory Medical Device Prototyping
Department of Biomedical Engineering, University of Minnesota
http://saliterman.umn.edu/
Topics

- Solid state power switching:
 - Silicon controlled rectifiers (SCR or Thyristor).
 - Gate Turn–Off Thyristor (GTO).
 - Integrated Gate–Commutated Thyristor.
 - Insulated–Gate Bipolar Transistor.
 - Triacs

- Additional Power Control
 - Unijunction transistor
 - Field effect transistors
The Silicon Controlled Rectifier (SCR) is simply a conventional rectifier controlled by a gate signal.
The main circuit is a rectifier. However, a gate signal is required for turning \textbf{ON}.

Once switched \textbf{ON} by a gate signal, but even after the gate signal is removed, the thyristor remains in the \textbf{ON} state until any turn \textbf{OFF} condition occurs.

- Application of a reverse voltage to the terminals,
- When the forward current falls below a certain threshold value known as the "holding current".
- Thus, a thyristor behaves like a normal semiconductor diode after it is turned on or "fired".
Thyristor V–I Curve

- **Forward conduction**
 - $I_{G_3} > I_{G_2} > I_{G_1}$
- **Holding current**
- **Reverse leakage**
- **Avalanche breakdown**
- **Forward leakage**
- **Forward breakover voltage**

Diagram showing the different regions of operation for a thyristor.
Gate Turn–Off Thyristor (GTO)

- Fully controllable switches that can be turned off by their gate.
 - The GTO can be turned on by a gate signal, and can also be turned off by a gate signal of negative polarity.
- Requires external devices ("snubber circuits") to shape the turn on and turn off currents to prevent device destruction.

Left & Center: Images courtesy of Wikipedia
Center: Image courtesy of Electronics Hub
Right: Image courtesy of Hello Trade
An IGCT is a special type of thyristor similar to a gate turn-off thyristor (GTO).

They can be turned on and off by a gate signal,

Lower conduction loss as compared to GTOs, and withstand higher rates of voltage rise (dv/dt), such that no snubber is required for most applications.
Insulated-Gate Bipolar Transistor

- Three-terminal power semiconductor device primarily used as an electronic switch
- High efficiency and fast switching.
- Used in variable-frequency drives (VFDs), electric cars, trains, variable speed refrigerators, lamp ballasts, air-conditioners and stereo systems with switching amplifiers.

Wikipedia
Right: Image courtesy of RF Global Net
IGBT Collector Current to CE Voltage...

Cyril Buttay, based on model in "Power semiconductor devices" by B. J. Baliga, ISBN 0-534-94098-6, CC BY-SA 3.0
Two anti-parallel SCRs. Generally used for motor speed control and in light dimmer.

It can be triggered by either a positive or a negative voltage being applied to its gate electrode (with respect to T1, otherwise known as MT1 or A1).

- Once triggered, the device continues to conduct until the current through it drops below a certain threshold value, the holding current, such as at the end of a half-cycle of alternating current (AC) mains power.
Examples of Solid State Relays...

SCR Chip, Photo Isolation.
Output Switching Voltage: 48 – 280 VAC.
Maximum Load Current: 0.1 – 5 A.
Maximum Surge Current: 250 A.

Dual SPST DIP Solid State Relay.
Input Control Current: 5–50 mA.
Output Switching Voltage: 0 – 60 V AC/DC
Load Current up to 400mA.

Images courtesy of Futurlec.
Controlling a High Voltage Device...

- **Optocoupler (MOC3021)**: Used to isolate the control signal from the high voltage circuit.
- **Resistors (R1: 360 Ohms, R2: 470 Ohms)**: Used to limit current and control the voltage.
- **Capacitors (C1: 0.05uF)**: Used for filtering and decoupling.
- **Triac (BT136)**: Used to control the flow of current in one direction.
- **Snubber Circuit**: Requires only for inductive load (e.g., motor).

Additional components include:
- 5v/0v (on/off) switch
- Gnd
- Power Supply (e.g., 220v 50Hz)

Image courtesy of Sigmatone.
Unijunction Transistor (UJT)

- Three-lead electronic semiconductor device with only one junction that acts exclusively as an electrically controlled switch. The UJT is not used as a linear amplifier.
- With the emitter unconnected, the bar acts as a potential divider, and about 0.5 volts appears at the emitter. If a voltage is connected to the emitter, as long as it is less than 0.5 volts, nothing happens, as the P–N junction is reversed biased. (see the right hand diagram).
- When the emitter voltage exceeds 0.5 volts, the junction is forward biased and emitter current will flow. This increase in current is equal to a reduction of resistance between base 1 and the emitter.
- Useful for triggering thyristors.
The connections at the ends of the bar are known as bases B1 and B2; the P-type mid-point is the emitter.

With the emitter disconnected, the total resistance RBBO, a datasheet item, is the sum of RB1 and RB2.

RBBO ranges from 4–12kΩ for different device types.

The intrinsic standoff ratio η is the ratio of RB1 to RBBO. It varies from 0.4 to 0.8 for different devices.
As V_E increases, current I_E increases up I_P at the peak point.
Beyond the peak point, current increases as voltage decreases in the negative resistance region.
The voltage reaches a minimum at the valley point.
The resistance of R_{B1}, the saturation resistance is lowest at the valley point.
UJT Relaxation Oscillator...

\[
2n2647 \quad R_{BBO} = 4.7 - 9.1k \quad \eta = 0.68 - 0.82 \quad I_V = 8mA \quad I_P = 2\mu A
\]

\[
f = \frac{1}{RC \ln(1/(1-\eta))} = \frac{1}{(100k)(10nF) \ln(1/(1-0.75))} = 1.39\text{kHz}
\]
Here we see control of motor speed by sending short pulses of current to the SCR.

A UJT relaxation oscillator generates a series of pulses that drives an SCR on and off.

To vary the speed of the motor, the UJT’s oscillatory frequency is adjusted by changing the RC time constant.

Field Effect Transistors (JFETS & MOSFETS)

<table>
<thead>
<tr>
<th></th>
<th>FET</th>
<th>vs</th>
<th>BJT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low voltage</td>
<td>Low voltage</td>
<td>High</td>
<td>gain.</td>
</tr>
<tr>
<td>gain.</td>
<td>gain.</td>
<td>voltage</td>
<td>gain.</td>
</tr>
<tr>
<td>High current</td>
<td>High current</td>
<td>Low</td>
<td>gain.</td>
</tr>
<tr>
<td>gain.</td>
<td>gain.</td>
<td>current</td>
<td>gain.</td>
</tr>
<tr>
<td>High input</td>
<td>High input</td>
<td>Low</td>
<td>and out impedance.</td>
</tr>
<tr>
<td>and out</td>
<td>and out</td>
<td>input</td>
<td>impedance.</td>
</tr>
<tr>
<td>impedance.</td>
<td>impedance.</td>
<td>and</td>
<td>output impedance.</td>
</tr>
<tr>
<td>Easily damaged</td>
<td>Easily damaged</td>
<td>Robust</td>
<td>by static</td>
</tr>
<tr>
<td>by static</td>
<td>by static</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>Voltage</td>
<td>Current</td>
<td>Controlled</td>
</tr>
<tr>
<td>Controlled</td>
<td>Controlled</td>
<td>Controlled</td>
<td></td>
</tr>
<tr>
<td>High current</td>
<td>High current</td>
<td>Low</td>
<td>needs like motors</td>
</tr>
<tr>
<td>needs like</td>
<td>needs like</td>
<td>current</td>
<td>and servos</td>
</tr>
<tr>
<td>motors</td>
<td>motors</td>
<td>relays,</td>
<td>and oscillators</td>
</tr>
<tr>
<td>& servos</td>
<td>& servos</td>
<td>LEDs,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lamps,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>amps,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>&</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oscillators</td>
<td></td>
</tr>
</tbody>
</table>

 Courtesy of Electronics Tutorials, Aspen Core, Inc.
The junction gate field-effect transistor (JFET) is the simplest type of field-effect transistor. They are three-terminal semiconductor devices that can be used as electronically-controlled switches, amplifiers, or voltage-controlled resistors.

The control element for the JFET comes from depletion of charge carriers from the n-channel. When the Gate is made more negative, it depletes the majority carriers from a larger depletion zone around the gate. This reduces the current flow for a given value of Source-to-Drain voltage. Modulating the Gate voltage modulates the current flow through the device.
The MOSFET differs from a JFET in that it has a “Metal Oxide” Gate electrode which is electrically insulated from the main semiconductor n-channel or p-channel by a very thin layer of insulating material usually silicon dioxide.

This ultra thin insulated metal gate electrode can be thought of as one plate of a capacitor. The isolation of the controlling Gate makes the input resistance of the MOSFET extremely high.

The MOSFET also acts like a voltage controlled resistor were the current flowing through the main channel between the Drain and Source is proportional to the input voltage.

Courtesy of Electronics Tutorials, Aspen Core, Inc.
MOSFET...

- **Depletion Type**
 - The transistor requires the Gate-Source voltage, \(V_{GS} \) to switch the device “OFF”.
 - The depletion mode MOSFET is equivalent to a “Normally Closed” switch.

- **Enhancement Type**
 - The transistor requires a Gate-Source voltage, \(V_{GS} \) to switch the device “ON”.
 - The enhancement mode MOSFET is equivalent to a “Normally Open” switch.

Courtesy of Electronics Tutorials, Aspen Core, Inc.
Summary

- Solid state power switching:
 - Silicon controlled rectifiers (SCR or Thyristor).
 - Gate Turn–Off Thyristor (GTO).
 - Integrated Gate–Commutated Thyristor.
 - Insulated–Gate Bipolar Transistor.
 - Triacs

- Additional Power Control
 - Unijunction transistor
 - Field effect transistors