Bioprint Design & Use of Imaging in 2022

Prof. Steven S. Saliterman Department of Biomedical Engineering, University of Minnesota http://saliterman.umn.edu/

Prof. Angela Panoskaltsis-Mortari's BMEn 5361, 3D Bioprinting

Some Common Imaging Methods...

- Magnetic Resonance Imaging (MRI) or NMR
 Human max. is 3T (Tesla) resolution of 250µm x 250µm 0.5mm.
 High spatial resolution µMRI, 7-10T, 5-200µm. Magnetic nanoparticles.
- Computed handpartetes
 Computed tomography (CT) Computer Axial Tomography
 Typical resolution of 0.24 0.3mm.
 µCT, resolution of 1-200µm.
- Ultrasound (less useful in bioprinting)
 Resolution of 1mm x 1.mm x 0.2mm.
- PET Positron emission tomography
- SPECT Single photon emission computed tomography Optical Coherence Tomography (OCT)
- Traditional optical techniques.

Prof. Steven S. Sal

Components of Medical Imaging...

- Image formation & reconstruction using machines to create 2D and 3D images.
- Image *processing* and *analysis* algorithms to enhance image properties (like noise removal); extracting quantitative information or a set of features from the image for object identification and classification.
- Input into *Machine Leaning* and *Deep Learning* systems for more advanced analysis.

Design Techniques...

- Underlying methods in CAD systems:
- Constructive solid geometry (solid primitives and boolean operators)
- Boundary representation (vertices, edges and faces)
- Spacial enumeration (cubic elements)
- Image-based design
- Implicit surfaces
- Space-filling curves
- Irregular porous structures

Prof. Steven S. Saliterman

Giannitelli, S. M., et. al., "Current Trends in the Design of Scaffolds for Computer-Alded Tissue Engineering," [In English]. *Acta Biomaterialia* 10, no. 2 (Feb 2014): 580–94.

Lay-down Patterns	90°.	120° 60° 0°	135' 45'
Honeycomb Pores			
Hilbert Recursive Curves			
Prof. Steven S. Saliterman	Giannitelli, S. M., et for Computer-Aide <i>Biomaterialia</i> 10, n	t. al "Current Trends d Tissue Engineering." o. 2 (Feb 2014): 580-9	in the Design of Scaffolds [In English]. <i>Acta</i> 94.

Segmentation

Purpose

- To delineate and isolate anatomical features within an imaging database- e.g. bone, cartilage, soft tissue, edema; muscle, lung, brain & other organs, and tumors.
- Categories
 - Manual, Semi-automatic and fully automatic.
- Techniques
- Thresholding
 Clustering based approach
- Edge-based

of. Steven S. Salite

Segmentation with Available Software...

- Extract images from DICOM files (ITK-Snap, Onis) and possible deindentifying them for HIPPA regulations (DICOMCleaner).
- (DICOMCleaner).
 Segmentation Software (ITK-Snap, Seg3D2, Materialise Mimics, Materialise 3-matic).
 Pre-segmentation Phase identify parts of image as foreground and background.
 Active Contour Phase manual and semiautomatic methods.
 Editing and fixing mesh files (.STL) Autodesk Meshmixer.
 Slicer software Simplify3D and Repetier.
 G-coding for the specific bioprinter e.g. Slic3R (printer customized interface to control what happens in a sequence of control steps.)

		 	1.00
1 () () () () () () () () () () () () ()	And a		1 St. 199
		2140 2157/ m	201 81 brigger

Toolpaths

- Bioprinting rasters may be in Cartesian vs parametric* form. Consider extrusion-based (EBB) rather than droplet-base (DBB) or laser-based bioprinting (LBB) which are less common and based on manufacturer specific tool paths.
 Why use one method vs the other?
- Issues arise with resulting printed *gradients* as excess accumulation of bioink can occur at directional changes. Parametric* modeling/toolpath may be helpful for *lumen* and other *hollow shape* object printing.
- Control of porosity (e.g. bones)

*Parametric implies a variable is dependent on other variables -commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface.

Image J1 & J2 Software

- Image processing software developed by the NIH.
- > Display, edit, analyze, process, save and print color and grayscale images.
- > Able to read TIFF, PNG, GIF, JPEG, BMP, DICOM and FITS files.
- Calculate area and pixel value statistics of userdefined selections and intensity-threshold of objects.
- Measure distances and angles.

- Create density histograms and line profile plots.
- Supports standard image processing functions such as logical and arithmetical operations between images, contrast manipulation, convolution, Fourier analysis, sharpening, smoothing, edge detection, and median filtering.
- Geometric transformations such as scaling, rotation, and flips.
- Useful in evaluating 3D printability of gels though image analysis of lattice structures.

of. Steven S. Salit

Machine & Deep Learning

- Identification and quantification of patterns in medical images.
- images.
 Implications for clinical diagnosis with automated and enhanced throughput, and applications of segmentation including 3D model building and bioprinting.
 Simple machine learning includes automated analysis, beginning with *feature extraction* based on visually distinct regions color, gray scale, texture, contrast and size. These regions have semantic meaning for the given problem. This becomes input into an *ML classifier*, which can determine optimal boundaries.
 With a *deep learning-based classifier (DLC)*, raw image data is processed without pre-processing, segmentation and feature extraction.

Summary

- Approaches to Tissue Engineering.
- Workflow
- Imaging
- Design
- Segmentation
- Tool Paths
- Image J1 & J2 Software
- Application of Machine Learning and Deep Learning