CPET-VARIABLES, 9-PANEL DISPLAY, INTERPRETATION, AND LEVEL OF EVIDENCE

Prof. Steven Saliterman, MD, FACP https://saliterman.umn.edu/physiology

Topics

• Indications

- Measured Parameters
- CPET Variables & Special Parameters
- ° Peak VO2, VCO2 & Ventilatory Threshold
- 9 Panel display
- \circ Interpretation
- Clinical Stratification
- $^{\circ}$ Assessment of CPET Variables
- Suitability of CPET Variables, Class Recommendations & Level of Evidence

Cardiopulmonary Exercise Testing* *Abbreviated CPET or CPX

Metabolic cart (gas exchange),tread mill and electrocardiogram monitor.

Vyntus[®] CPX Metabolic Cart and pedal ergometer, showing mask with gas sensors.

Indications for CPET

- Evaluation of dyspnea of unclear etiology after routine cardiopulmonary testing.
- Determination of functional impairment in exercise intolerance.
- Heart failure.
- Evaluation for exercise-induced bronchospasm, and response to therapy.
- Preoperative evaluation prior to lung and/or heart surgery.
- Muscle-metabolic disorders.
- Athlete monitoring.

```
Table 1: Parameters measured during CPET
Tidal Volume: VT
Breathing frequency: Respiratory Rate (RR or f)
Minute Ventilation: V_{F} = VT \times RR
Rate of O<sub>2</sub> consumption: O<sub>2</sub> uptake (V_{02})
Maximal V<sub>02</sub>: V<sub>02 max</sub>
Rate of CO<sub>2</sub> elimination: CO<sub>2</sub> output (V<sub>CO2</sub>)
Anaerobic threshold: AT, Also referred to as VT, Ventilatory Threshold - gases or lactate
Respiratory Exchange ratio/ Respiratory Quotient (RER/RQ)
Heart Rate Reserve (HRR)
HR vs. V<sub>02</sub> slope
O2 pulse (V_{02}/HR)
Ventilatory Reserve (VR)
Maximal ventilation (V<sub>Emax</sub>)
Ventilatory Equivalents for O<sub>2</sub> and CO<sub>2</sub> (V_{\rm F}/V_{\rm O2} and V_{\rm F}/V_{\rm CO2})
End-tidal O<sub>2</sub>: PETO<sub>2</sub> (partial pressure of end-tidal oxygen)
End-tidal CO<sub>2</sub>: PETCO<sub>2</sub>
Dead space/Tidal volume: V_{D}/V_{T}
```

Datta D, Normandin E, ZuWallack R. Cardiopulmonary exercise testing in the assessment of exertional dyspnea. *Ann Thorac Med.* 2015;10(2):77-86.

Special Parameters...

- MET (metabolic equivalent): The ratio of the *work metabolic rate* to the *resting metabolic rate*. One MET is defined as 1 kcal/kg/hour and is roughly equivalent to the energy cost of sitting quietly.
- MMV (maximum voluntary ventilation): a measure of the maximum amount of air that can be inhaled and exhaled within one minute.
- RER (respiratory exchange ratio): The respiratory exchange ratio is the ratio between the amount of <u>carbon dioxide</u> produced in metabolism and <u>oxygen</u> used. The ratio is determined by comparing exhaled gases to room air.

- VE (minute ventilation): the *volume* of gas inhaled (inhaled minute volume) or exhaled (exhaled minute volume) from a person's lungs per minute.
- VE/VO₂ and VE/VCO₂: These are the *Ventilatory Equivalents* for O2 and CO₂. <u>They describes the ratio of ventilation (minute volume)</u> to oxygen intake, or to carbon dioxide output.
 - A measure of instantaneous ventilatory and gas exchange efficiency.
 - Tells how many liters does the patient have to breath in order to uptake 1 liter of oxygen or to produce 1 liter of carbon dioxide?

 AT (Anaerobic Threshold) or VT (Ventilatory Threshold): refers to the point during exercise at which ventilation starts to increase at a faster rate than VO₂ (volume of oxygen). Two thresholds;

 \circ VT1

- It is a marker of intensity that can be observed in a person's breathing at a point where lactate begins to accumulate in the blood.
- As the intensity of the exercise begins to increase, VT1 can be identified at the point where the breathing rate begins to increase.

 \circ VT2

• At VT2, lactate has quickly accumulated in the blood and the person needs to breathe heavily.

 $_{\odot}$ At this rapid rate of breathing, the exerciser can no longer speak.

Peak Vo₂

- <u>Global marker of fitness</u>. It represents the combination of ventricular systolic and diastolic function (cardiac output), vascular function (O_2 delivery), and peripheral skeletal muscle metabolic capacity (O_2 utilization).
- \circ According to the Fick principle, VO_2 is determined by
 - Heart rate, stroke volume, the concentration of hemoglobin and its capacity to transport oxygen.
 - Difference between arterial oxygen saturation (reflecting lung problems and other right-to-left shunts), and
 - Mixed venous oxygen saturation (reflecting peripheral blood flow distribution and oxygen extraction in the muscle).

Wagner J, Agostoni P, Arena R, et al. The Role of Gas Exchange Variables in Cardiopulmonary Exercise Testing for Risk Stratification and Management of Heart Failure with Reduced Ejection Fraction. *Am Heart J.* 2018;202:116-126.

```
Peak Vo2, Vco2 &
Ventilatory Threshold...
```

Peak Vo₂

Highest oxygen uptake obtained (aerobic capacity) Values vary widely with age, sex, activity level, weight, and disease (< 20 mL/kg/min in elderly; > 90 in elite athletes)

Nonspecific but starting point for interpretation and stratification

Peak Vo₂ \ge 85% of predicted is generally favorable; \le 14 mL/kg/min carries a poor prognosis in heart failure (\le 10 if on beta-blockers)

Ventilatory threshold

Point at which anaerobic metabolism increases Vo_2 at ventilatory threshold typically is 40%–60% of peak Vo_2

A low value is consistent with deconditioning or disease; a high value is consistent with athletic training

FIGURE 1. Diagram of response to work. Impairment from any cause will lower the peak Vo_2 and ventilatory threshold.

Leclerc K. Cardiopulmonary exercise testing: A contemporary and versatile clinical tool. *Cleve Clin J Med.* 2017;84(2):161-168.

Ventilatory Threshold.....

Ventilatory threshold

Point at which anaerobic metabolism increases Vo₂ at ventilatory threshold typically is 40%–60% of peak Vo₂

A low value is consistent with deconditioning or disease; a high value is consistent with athletic training

Recall: VE/VCO₂ or VE/VO₂ (ventilatory equivalent): describes the ratio of ventilation (minute volume) to oxygen intake, or to carbon dioxide output.

FIGURE 2. One method of determining the ventilatory threshold is to determine the intersection of the VE/VO₂ and VE/VCO₂ curves.

Leclerc K. Cardiopulmonary exercise testing: A contemporary and versatile clinical tool. *Cleve Clin J Med.* 2017;84(2):161-168.

Vo₂ vs Heart Rate; Level of Conditioning & Heart Failure...

Note that Maximal Predicted HR = $(220 - Age) \times 85\%$

Dumitrescu D, Rosenkranz S. Graphical Data Display for Clinical Cardiopulmonary Exercise Testing. *Annals of the American Thoracic Society*. 2017;14(Supplement_1):S12-S21.

assessment of exertional dyspnea. Ann Thorac Med. 2015;10(2):77-86.

assessment of exertional dyspnea. Ann Thorac Med. 2015;10(2):77-86.

Datta D, Normandin E, ZuWallack R. Cardiopulmonary exercise testing in the assessment of exertional dyspnea. *Ann Thorac Med.* 2015;10(2):77-86.

VE/VCO_2 (minute ventilation/ CO_2 output)...

VE/Vco₂ slope

Ventilatory volume/carbon dioxide output; reflects ventilatory efficiency
Normal 25–30
May be slightly elevated in isolation in otherwise healthy elderly patients
Elevated value reflects ventilatory inefficiency or ventilation-perfusion mismatch
Values ≥ 34 indicate clinically significant cardiopulmonary disease (heart failure, pulmonary hypertension, chronic obstructive pulmonary disease

Higher values = worse prognosis

Leclerc K. Cardiopulmonary exercise testing: A contemporary and versatile clinical tool. *Cleve Clin J Med.* 2017;84(2):161-168.

Mezzani A. Cardiopulmonary Exercise Testing: Basics of Methodology and Measurements. *Annals of the American Thoracic Society*. 2017;14(Supplement_1):S3-S11.

Scoring for Heart Failure ...

Cardiopulmonary exercise testing scoring system for patients with heart failure

Variable	Value	Points
Ventilation/carbon dioxide (VE/Vco ₂) slope	≥ 34	7
Heart rate recovery ^a	≤ 6 bpm	5 ^b
Oxygen uptake efficiency slope	≤ 1.4	2
Peak Vo ₂	\leq 14 mL/kg/min	2

Score > 15 points: annual mortality rate 12.2%; relative risk > 9 for transplant, left ventricular assist device, or cardiac death.

Score < 5 points: annual mortality rate 1.2%.

^a Maximum heart rate minus heart rate at 1 minute in recovery.

^b 2 points if on a beta-blocker.

Leclerc K. Cardiopulmonary exercise testing: A contemporary and versatile clinical tool. *Cleve Clin J Med.* 2017;84(2):161-168.

VE/Vco₂ slope

Ventilatory volume/carbon dioxide output; reflects ventilatory efficiency

Normal 25–30

May be slightly elevated in isolation in otherwise healthy elderly patients

- Elevated value reflects ventilatory inefficiency or ventilation-perfusion mismatch
- Values ≥ 34 indicate clinically significant cardiopulmonary disease (heart failure, pulmonary hypertension, chronic obstructive pulmonary disease Higher values = worse prognosis

Recall: VE/VCO_2 (ventilatory equivalent): describes the ratio of ventilation (minute volume) to carbon dioxide output.

Leclerc K. Cardiopulmonary exercise testing: A contemporary and versatile clinical tool. *Cleve Clin J Med.* 2017;84(2):161-168.

Mezzani A. Cardiopulmonary Exercise Testing: Basics of Methodology and Measurements. *Annals of the American Thoracic Society*. 2017;14(Supplement_1):S3-S11.

Cardiopulmonary exercise testing scoring system for patients with heart failure

Variable	Value	Points
Ventilation/carbon dioxide (VE/Vco ₂) slope	≥ 34	7
Heart rate recovery ^a	≤ 6 bpm	5 ^b
Oxygen uptake efficiency slope	≤ 1.4	2
Peak Vo ₂	\leq 14 mL/kg/min	2
$S_{coro} > 15$ points: appual mortality rate 12.20	k: rolative rick > 0 for t	transplant laft

Score > 15 points: annual mortality rate 12.2%; relative risk > 9 for transplant, left ventricular assist device, or cardiac death.

Score < 5 points: annual mortality rate 1.2%.

^a Maximum heart rate minus heart rate at 1 minute in recovery.

^b2 points if on a beta-blocker.

Leclerc K. Cardiopulmonary exercise testing: A contemporary and

versatile clinical tool. Cleve Clin J Med. 2017;84(2):161-168.

What cardiopulmonary exercise test patterns suggest

Nonspecific: suggest significant cardiopulmonary or metabolic impairment of any sort

Peak $Vo_2 < 80\%$ of predicted VE/VCO₂ slope > 34 Ventilatory (anaerobic) threshold < 40% of peak Vo_2

Deconditioning

Low-normal peak Vo₂ Low ventilatory (anaerobic) threshold Absence of any other abnormal responses

Obesity

Increased Vo₂/work slope Indexed peak Vo₂ (mL/kg/min) less than predicted Absolute Vo₂ (L/min) normal or greater than predicted Oxygen indexed to lean body mass normal or greater than predicted

continued...

 $\label{eq:leclercK} Leclerc\,K.\,Cardiopulmonary\,exercise\,testing: A\,contemporary\,and$

versatile clinical tool. Cleve Clin J Med. 2017;84(2):161-168.

Cardiac limitations

Oxygen pulse (O_2 -pulse) < 80% predicted or flattened or falling curve Chronotropic incompetence Heart rate recovery \leq 12 beats per minute after 1 minute of recovery Standard electrocardiographic criteria for ischemia

Pulmonary limitations

Peak exercise respiratory rate > 50 per minute Ventilatory reserve (peak VE/MVV) < 15% Oxygen desaturation by pulse oximetry Abnormal results on pretest screening spirometry Abnormal exercise flow-volume loops

Muscular disease

Submaximal cardiac and respiratory responses Ventilatory (anaerobic) threshold < 40% of peak Vo₂ Elevated lactate at any given level of submaximal work

Leclerc K. Cardiopulmonary exercise testing: A contemporary and

versatile clinical tool. Cleve Clin J Med. 2017;84(2):161-168.

VE and **RER**

(Minute ventilation and Respiratory Exchange Ratio. Ratio between the amount of carbon dioxide produced in metabolism and oxygen used.)

(VO_2/HR) or O_2 Pulse (ml/beat)

 $\begin{array}{l} \textbf{PETO}_2\\ \textbf{PETCO}_2\\ (Partial \, Pressure \, of \, End \\ Tidal \, O_2 \, and \, CO_2) \end{array}$

Weisman, IM et al., Clinical exercise testing. *Clinics in Chest Medicine* 2001, 22:4: 679.

Leclerc K. Cardiopulmonary exercise testing: A contemporary and versatile clinical tool. Cleve Clin J Med. 2017;84(2):161-168.

Mezzani A. Cardiopulmonary Exercise Testing: Basics of Methodology and Measurements. Annals of the American Thoracic Society.

Time (s)

840

960

1080

2017;14(Supplement 1):S3-S11.

0

120

240

	Primary CPET Variables	;	
VE/Vco2 Slope	Peak Vo ₂	EOV	P _{ET} CO ₂
Ventilatory Class I	Ventilatory Class A	Not Present	Resting P _{ET} CO ₂
VE/Vco ₂ slope <30.0	Peak Vo ₂ >20.0 ml·kg ⁻¹ ·min ⁻¹		≥33.0 mm Hg 3-8 mm Hg increase during E
Ventilatory Class II	Ventilatory Class B		
VE/Vco ₂ slope 30.0-35.9	$Peak Vo_2 = 16.020.0 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$		
Ventilatory Class III	Ventilatory Class C	Present	Resting P _{ET} CO ₂
VE/Vco ₂ slope 36.0-44.9	Peak $Vo_2 = 10.0-15.9 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$		<33.0 mm Hg <3 mm Hg increase during E ⁻
Ventilatory Class IV	Ventilatory Class D		
VE/Vco₂ slope ≥45.0	Peak <10.0 ml·kg ⁻¹ ·min ⁻¹		
	Standard ET Variables		
Hemodynamics	ECG		HRR
e in systolic BP during ET	No sustained arrhythmias, ectopic foci, and/or ST-segment changes during ET and/or in recovery		>12 beats at 1 min recover
t systolic BP response during ET	Altered rhythm, ectopic foci, and or ST-segment changes during ET and/or in recovery: did not lead to test termination		≤12 beats at 1 min recover
op in systolic BP during ET	Altered rhythm, ectopic foci, and/or ST- ET and/or in recovery: led to test te		
	Patient Reason for Test Term	ination	
wer extremity muscle fatigue	Angina		Dyspnea
	Interpretation		
 Maintain medical management a Greater number of CPET and stand All CPET variables in red: risk fo Greater number of CPET and stand All CPET variables in red: expect 	ognosis in the next 1-4 years (≥90% event nd retest in 4 years ard ET variables in red/yellow/orange indic r major adverse event extremely high in ne ard ET variables in red/yellow/orange indic ed significantly diminished cardiac output, e ndard ET variables in red/yellow/orange v	ative of progressively wor xt 1-4 years (>50%) ative of increasing HF dise elevated neurohormones, h	ase severity. higher potential for secondary PH

Guazzi M, Bandera F, Ozemek C, Systrom D, Arena R. Cardiopulmonary Exercise

Testing: What Is its Value? *JAm Coll Cardiol*. 2017;70(13):1618-1636.

Table I

Assessment of CPET variables

	Peak VO2/ % predicted peak VO2	V॑ _E -V॑CO₂ slope	EOV	OUES	PetCO ₂
Proof of concept	+++	+++	+++	+	+++
Prospective validation	+++	+++	+++	+	+
Incremental value	++	+++	+++	+/-	+/-
Clinical utility	++	+++		+	-
Clinical outcomes	+++	+++	++	+	-
Cost-effectiveness	+	-	-	-	-
Ease of use	++	++	++	++	++
Methodological consensus	-	-	-	+	-
Reference values	Yes	Yes	Not necessary	Yes	Yes

 $Peak \dot{V}O_2 = peak oxygen uptake; \dot{V}_E - \dot{V}CO_2 \ slope = minute \ ventilation \ to \ carbon \ dioxide \ production \ slope; EOV = exercise \ oscillatory \ ventilation; OUES = oxygen \ uptake \ efficiency \ slope; eventilation; over \ slope \ slop$

 $P_{ET}CO_2 =$ the partial pressure of end-tidal CO_2

++++= criteria fully met, very large evidence base

+++ = criteria fully met, large evidence base

++= criteria met, moderate evidence base

+ = minimal requirements of criteria met, small evidence base

+/-= criteria partly met and/or contradictory literature

- = criteria not met

Wagner J, Agostoni P, Arena R, et al. The Role of Gas Exchange Variables in Cardiopulmonary Exercise Testing for Risk Stratification and Management of Heart Failure with Reduced Ejection Fraction. *Am Heart J.* 2018;202:116-126.

Table II(For Heart Failure and
Suitability of CPET variables for primary and secondary HFrEF prevention
reduced Ejection Fraction)

	Recommendation	Level of evidence
Peak VO ₂ /		
% predicted peak VO ₂	Ι	А
\dot{V}_{E} - $\dot{V}CO_{2}$ slope	Ι	А
EOV	IIa	В
OUES	IIb	В
P _{ET} CO ₂	IIb	В

Class recommendations system used by Arena et al.⁷:

I = CPET is clearly prognostic/diagnostic & gauges therapeutic efficacy;

IIa = CPET is likely prognostic/diagnostic & likely gauges therapeutic efficacy;

IIb = CPET may be prognostic/diagnostic & may gauge therapeutic efficacy;

III = CPET is not prognostic/diagnostic & does not gauge therapeutic efficacy.

Level of evidence ratings used by Arena et al.⁷:

Level A = Multiple investigations, possibly one or more meta-analyses, prospective study design Level B = Several investigations, total number of studies not considered definitive because of total number and/or study quality, mix of retrospective and prospective disgns

Level C = Scientific evidence, limited, expert opinions

Wagner J, Agostoni P, Arena R, et al. The Role of Gas Exchange Variables in Cardiopulmonary Exercise Testing for Risk Stratification and Management of Heart Failure with Reduced Ejection Fraction. *Am Heart J*. 2018;202:116-126.

Summary

- Indications
- Measured Parameters
- CPET Variables & Special Parameters
- Peak VO₂, VCO₂ & Ventilatory Threshold
- \circ 9 Panel display
- \circ Interpretation
- Clinical Stratification
- $^{\circ}$ Assessment of CPET Variables
- Suitability of CPET Variables, Class Recommendations & Level of Evidence