Point of Care Diagnostic Device for Early Detection of Osteoarthritis

BMEn 5151 Spring 2022 Carolyn, Davis, Tim, and Lindsey

Osteoarthritis

Definition

Irreversible degradation of protective cartilage in the joints

Symptoms

Pain, swelling, stiffness, tenderness loss of flexibility, grating sensation

Risk Factors

Older age, sex, obesity, joint injuries, genetics, deformaties, repeated stress

Current Treatments

Medications

Therapy

Procedures

- > Acetaminophen
- Nonsteroidal anti-inflammatory drugs (NSAIDs)
- Cymbalta

- > Physical Therapy
- Occupational Therapy
- TranscutaneousElectrical NerveStimulation (TENS)

- Cortisone Injections
- Lubrication
 Injections
- Realigning Bones
- > Joint Replacement

Limitations of Current Technology

1 No devices for early detection

Earlier treatment can reduce pain and discomfort.

2 Cartilage loss revealed by X-rays

Loss of space between bones revealed by imaging.

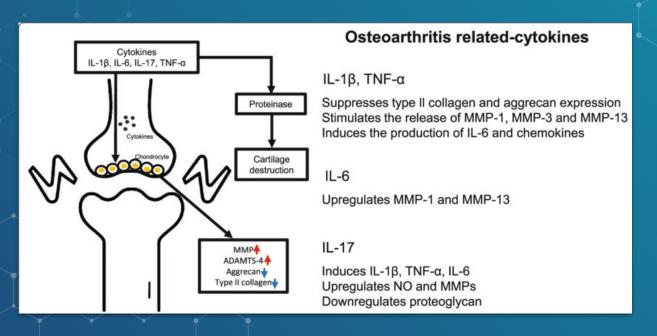
Joint fluid analysis to test for inflammation

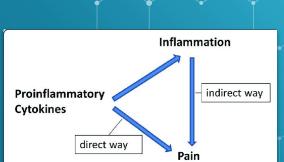
Fluid extracted from affected joint to determine if cause is infection or OA.

Design Proposal

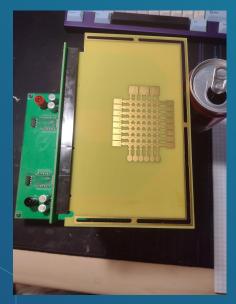
Combining biomarker counting and a sensor to confirm biomarker type for the most accurate and earliest detection of OA via synovial fluid

Targeted OA Biomarkers

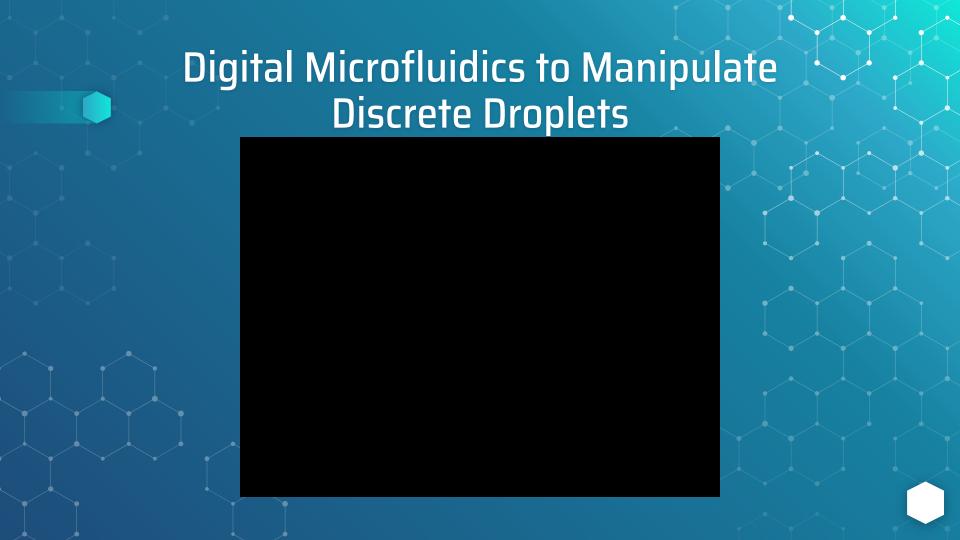

Cytokines


- → Proteins secreted by immune cells
- → Bind to synovial macrophages
- Leads to degradation of collagen that maintains joint structure

hYKL-39 Antibody

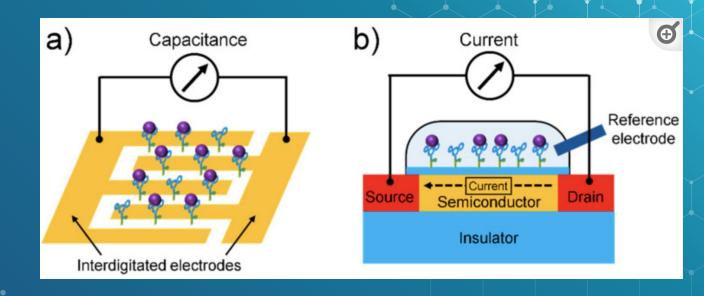

- → Binds with YKL-39 antigen
- Synthesises chondrocytes & synovial cells in inflammation or remodels the cell matrix
- Important for cartilage remodelling & degradation in OA joints

Biological Targets for Device Design


Digital Microfluidics to Manipulate Discrete Droplets

DMF Platform on Riser

Driver PCB with High Voltage Power Supply



Principles of Device Operation

Electrowetting
Dielectric Principle

Time Constant Capacitive Measurement

Receptor Placed on top of SIO₂

Device Material Selection

AlN Ceramic PCB: Excellent thermal conductivity, high insulation resistance, mass production

ALD of HfO₂: Excellent dielectric constant to reduce operation voltage.

Cy Top: Hydrophobic coating

SiO₂: Surface to grow aptamer

Device Stackup

Standard Device Cutaway

HfO₂

Au

Cu

AlN

Cu

Device Fabrication

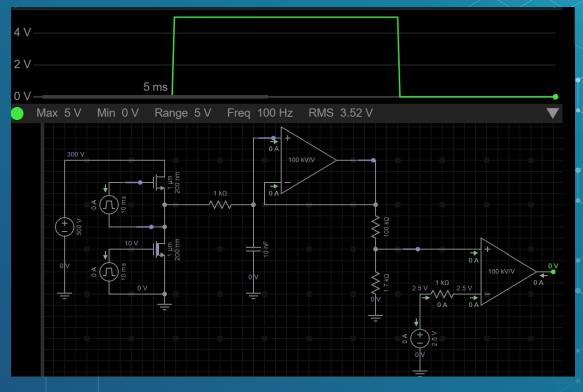
ITO Glass

Our method of employing capacitive measurement is to apply a DC voltage into the electrode and measure the T=RC constant where T is the time where the voltage at the electrode is ½ VDD.

CyTop Hydrophobic Coating

Electrode

Electrode


AlN

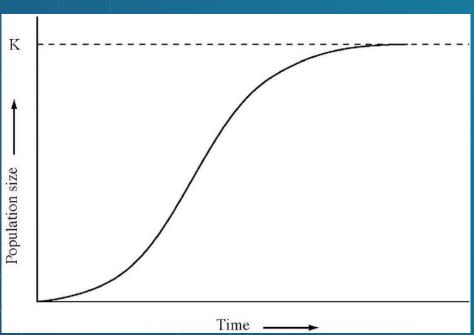
Cu Interconnect

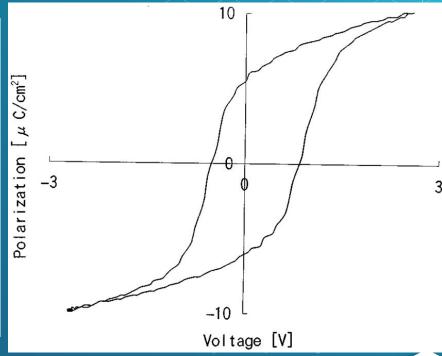
Capacitive Sensor

Cu, Au, SiO

Signal Acquisition

Testing and Validation

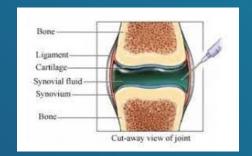

Quantitative characterization of capacitive versus concentration curves.


Unbinding method between proteins and antibody for reusability.

Hysteresis characterization of binding events

Overall precision and accuracy

Expected Result


Limitations & Challenges

Early Detection ≠ Cure

Invasive to get appropriate sample

Concentration of biomarker may not be enough to signal OA

Future Directions

- Potential for drug modeling purposes?
- Improving quality of analytical biomarkers
- Could be generalized to other joints to expand diagnostic capabilities
- As with most new technology, increasing accessibility by decreasing cost and size

Conclusions

- Osteoarthritis is a degenerative disease that occurs when the flexible tissue at the end of the bones wears down
- Our device aims to be able to more accurately and efficiently diagnose the disease using bioMEMS technology
- There are certainly limiting factors, but it has exciting prospects for the future of early diagnosis

Camacho-Encina, María et al. "Discovery of an autoantibody signature for the early diagnosis of knee osteoarthritis: data from the Osteoarthritis Initiative." Annals of the rheumatic diseases vol. 78,12 (2019): 1699-1705.

Centers for Disease Control and Prevention. (2020, July 27). Osteoarthritis (OA). Centers for Disease Control and Prevention. Retrieved April 26, 2022.

Haseeb, Abdul, and Tariq M Haqqi. "Immunopathogenesis of osteoarthritis." Clinical immunology (Orlando, Fla.) vol. 146,3 (2013): 185-96.

Chaocharoen, Wethaka & Ranok, Araya & Suginta, Wipa & Schulte, Albert. (2015). A microfluidic capacitive immunosensor system for human cartilage chitinase-3-like protein 2 (hYKL-39) quantification as osteoarthritis marker in synovial joint fluid. RSC Adv.. 5

Kim KH, Jo JH, Cho HJ, Park TS, Kim TM. Therapeutic potential of stem cell-derived extracellular vesicles in osteoarthritis: preclinical study findings. Lab Anim Res. 2020 Apr 15;36:10.

Mayo Foundation for Medical Education and Research. (2021, June 16). *Osteoarthritis - Symptoms and Causes*. Mayo Clinic. Retrieved April 26, 2022.

Kim, Jinmyeong et al. "Recent Advances in Aptasensor for Cytokine Detection: A Review." Sensors (Basel, Switzerland) vol. 21,24 8491. 20 Dec. 2021, doi:10.3390/s21248491