# Small but mighty: Creating an organ-on-a-chip model to study nanoparticle extravasation and uptake at tumor sites

Katelyn, Teresa, Theodore, and Natalie



### How can nanoparticles be used to treat cancer?

- Nanoparticles can deliver cancer therapeutics in a targeted manner with controlled release.<sup>1</sup>
- Often coated with targeting moieties which serve as ligands for receptors overexpressed on cancer cells.<sup>1</sup>
  - Folate, aptamers, peptides, antibodies
- Some nanoparticles rely on "passive targeting" to reach cancer cells by relying on their size/shape.<sup>1</sup>



**Fig. 1:** Diagram of general therapeutic nanoparticle architecture.<sup>1</sup>

### Nanoparticles and Tumor Vasculature

- Tumors tend to rapidly initiate angiogenesis for oxygen/nutrients supply, but these blood vessels are often leaky.<sup>2</sup>
- Tumors tend to have poorly developed lymphatic systems.
- These features together create the "Enhanced Permeability and Retention (EPR) Effect."<sup>2</sup>
- Nanoparticles tend to extravasate from circulation more easily at tumor sites due to leaky vessels and can accumulate more rapidly due to limited lymphatic drainage within the stroma.<sup>2</sup>



Fig. 2: Schematic of nanoparticle extravasation and active targeting of cancer cells.<sup>2</sup>

### Challenges with Nanoparticle Studies and Current Need

| Current Approaches                        | Challenges                                                                                                                                                                                                          |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Animal models <sup>5</sup>                | <ul> <li>Differences in the tumor microenvironment of animal models compared to humans.</li> <li>Mouse vessels are more permeable compared to human vessels</li> <li>High cost and long testing periods.</li> </ul> |  |  |
| 2D/3D<br>static cell culture <sup>6</sup> | <ul> <li>Limited capability in recapitulating in vivo tumor microenvironment</li> <li>Lack of chemical gradients and flow conditions</li> <li>Does not represent heterogeneity across patients</li> </ul>           |  |  |
| Leveraging<br>EPR <sup>5</sup>            | <ul> <li>Variability between different tumors and even within the same tumor         <ul> <li>Not all cancers present permeable vessels</li> </ul> </li> </ul>                                                      |  |  |

### Previous Research on Microfluidics and OOC in Cancer<sup>6</sup>



Fig. 1 | A timeline showing the development of different cancer organs-on-chips.

- OOC can mimic disease states
- Areas used in cancer research
  - Steps of cancer cascade
  - Tumor growth
  - Angiogenesis
  - EMT
  - Role of surrounding cells/env.
- Organ responses to
  - Drugs
  - Toxins
  - Radiation
  - Pathogens
  - Immune system

### Previous Research on Microfluidics and OOC in Cancer



### **Proposed BioMEMs Solution**

• We propose an OOC with 2 primary chambers which models a capillary and its surrounding tumor microenvironment.

#### **Upper Chamber:**

- Inlet/outlet flows and pressure mimic a capillary, suspended nanoparticles flow through
- Lined with endothelial cells

#### Chamber Barrier:

• PDMS membrane with variable porosity coated with ECM proteins for cell adhesion.

#### Lower Chamber:

- Inlet/outlet flows and pressures are variable for a tunable tumor environment
- Collagen matrix seeded with cancer and other relevant cells depending on modeling desires.
- Two side channels represent lymphatic drainage (can be manipulated for high/low levels of drainage)

#### Schematic of Existing "Lung-on-a-chip" Model <sup>3</sup>

#### Proposed Tumor Microenvironment OOC



# Fabrication <sup>6</sup>

#### 1) Silicon wafer with SU-8

2) Position photomask with channel pattern and expose mask/resist to UV light

3) "Develop" to dissolve un-polymerized SU-8

4) Cast PDMS

5) Repeat Steps 1-4 to create both top and bottom chambers

6) Insert porous PDMS membrane between the PDMS channel chambers and bond after plasma oxidation



# Seeding Cells and Modulating Permeability

- Before cell seeding, the porous PDMS membrane is coated with ECM
  - Could be composed of collagen, laminin, fibronectin, etc
- Endothelial Cells (HUVECs) seeded in the upper chamber via perfusion with shear stress
  - Permeability can be modulated by delivering signals like VEGF, TNF-alpha, and fibrinogen. <sup>4</sup>
- The lower chamber's cancer microenvironment consists of cancer cells, fibroblasts, and other relevant cells cultured in a collagen hydrogel



### Biocompatibility

- This device will not be placed in the body, it merely serves as a (hopefully improved) *in vitro* model, so its biocompatibility with the body is not a concern
- PDMS is known to be highly compatible for mammalian cell culture <sup>7</sup>
- Media will be continually perfused to maintain cell viability

| Tuning Factor         | Variables                                                                     | Impact                                                                            |  |
|-----------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| PDMS pores            | <ul><li>Quantity</li><li>Density</li><li>Size</li></ul>                       | Modulates permeability of modeled capillary                                       |  |
| Endothelial layer     | <ul><li>Cell type</li><li>Growth factor</li></ul>                             | Extravasation/transcellular uptake of nanoparticles                               |  |
| Extracellular matrix  | Protein composition                                                           | Stiffness/density of tumor microenvironment;<br>nanoparticle distribution         |  |
| Immune<br>system      | <ul> <li>Surveying immune cell<br/>types in lower chamber</li> </ul>          | Observing immune response to nanoparticles                                        |  |
| Interstitial pressure | <ul> <li>Flow pressure through chamber</li> <li>Lymphatic channels</li> </ul> | Diffusion of nanoparticles in various cancer<br>microenvironments can be observed |  |



Ideally we will use this device to test a variety of nanoparticles with different features (e.g. materials, coatings, targeting moieties, size, shape)



| Test Method   | Transmission electron<br>microscopy ( <b>TEM</b> ) and scanning<br>electron microscopy ( <b>SEM</b> ) | Fluorescence activated cell sorting ( <b>FACS</b> )         | Dynamic light scattering ( <b>DLS</b> )   |
|---------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|
| Application   | Visualization of nanoparticle<br>structure, morphology and<br>dispersion                              | Quantitative identification of nanoparticle internalization | Determination of nanoparticle aggregation |
| Advantages    | High resolution                                                                                       | Multiparameter separation                                   | Real time measurement                     |
| Disadvantages | Sample preparation                                                                                    | Needs cell suspensions                                      | Sensitivity to solvent viscosity          |

# Limitations

Other effects on nanoparticles

- Renal system filtering
- Immune system (macrophages)

Difficulty representing certain cancer types

• Hypovascularization of pancreatic cancer

Cost and resources for device fabrication and maintenance





Don't IGNORE YOUR LIMITATIONS



### **Benefits and Future Directions**

- Provides a cheaper, more tunable, and less variable solution than animal models
- Representativeness
  - Tune ECM and seeded cancer cells to recapitulate tumor microenvironment specific to different cancers
  - Tune to fit different patients
- Could also be used for cancer cell extravasation models
- Incorporate more immune response elements
  - Different macrophages
- Improve microfabrication techniques to allow for more universal use





Recapitulate the microenvironment

### Sources:

- Steichen, S. D., Caldorera-Moore, M., & Peppas, N. A. (2013). A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 48(3), 416-427. https://doi.org/10.1016/j.ejps.2012.12.006
- 2. Mattheolabakis, G., & Mikelis, C. M. (2019). Nanoparticle Delivery and Tumor Vascular Normalization: The Chicken or The Egg?. *Frontiers in oncology*, 9, 1227. https://doi.org/10.3389/fonc.2019.01227
- 3. Huh D. D. (2015). A human breathing lung-on-a-chip. Annals of the American Thoracic Society, 12 Suppl 1(Suppl 1), S42-S44. https://doi.org/10.1513/AnnalsATS.201410-442MG
- 4. Tyagi, N., Roberts, A. M., Dean, W. L., Tyagi, S. C., & Lominadze, D. (2008). Fibrinogen induces endothelial cell permeability. *Molecular and cellular biochemistry*, 307(1-2), 13-22. <u>https://doi.org/10.1007/s11010-007-9579-2</u>
- Chiarelli, P. A., Revia, R. A., Stephen, Z. R., Wang, K., Jeon, M., Nelson, V., Kievit, F. M., Sham, J., Ellenbogen, R. G., Kiem, H. P., & Zhang, M. (2017). Nanoparticle Biokinetics in Mice and Nonhuman Primates. ACS nano, 11(9), 9514-9524. <u>https://doi.org/10.1021/acsnano.7b05377</u>
- 6. Sontheimer-Phelps, A., Hassell, B.A. & Ingber, D.E. Modelling cancer in microfluidic human organs-on-chips. *Nat Rev Cancer* 19, 65-81 (2019). https://doi.org/10.1038/s41568-018-0104-6
- 7. Lee, J. N., Jiang, X., Ryan, D., & Whitesides, G. M. (2004). Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). Langmuir : the ACS journal of surfaces and colloids, 20(26), 11684-11691. https://doi.org/10.1021/la048562+
- 8. Chen, M. B., Whisler, J. A., Jeon, J. S., & Kamm, R. D. (2013). Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integrative biology : quantitative biosciences from nano to macro, 5(10), 1262-1271. https://doi.org/10.1039/c3ib40149a