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How can nanoparticles be used to treat cancer?

e Nanoparticles can deliver cancer
therapeutics in a targeted manner
with controlled release.’ Lipld-PEG =--—--s,

...... Lipid shell

--- Polymer core

e Often coated with targeting moieties
which serve as ligands for receptors
overexpressed on cancer cells.’

- — Encapsulated
drug

o Folate, aptamers, peptides, antibodies

e Some nanoparticles rely on “passive ®ioias @ ransieh
targeting” to reach cancer cells by B RGD Y Antibody
relying on their size/shape.’

Fig. 1: Diagram of general therapeutic
nanoparticle architecture.’



Nanoparticles and Tumor Vasculature

e Tumors tend to rapidly initiate angiogenesis for oxygen/nutrients supply,
but these blood vessels are often leaky.?

e Tumors tend to have poorly developed lymphatic systems.

e These features together create the “Enhanced Permeability and Retention
(EPR) Effect.”?

e Nanoparticles tend to extravasate from circulation more easily at tumor
sites due to leaky vessels and can accumulate more rapidly due to limited
lymphatic drainage within the stroma.?
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Fig. 2: Schematic of nanoparticle extravasation and active targeting of cancer cells.?



Challenges with Nanoparticle Studies and Current Need

Current Approaches | Challenges

Animal models e Differences in the tumor microenvironment of animal models compared to
humans.
o  Mouse vessels are more permeable compared to human vessels

High cost and long testing periods.

2D/3D Limited capability in recapitulating in vivo tumor microenvironment
static cell culture — T
e Lack of chemical gradients and flow conditions @
e Does not represent heterogeneity across patients ' J

e Variability between different tumors and even within the same tumor
o Not all cancers present permeable vessels

Leveraging
EPR®




Previous Research on Microfluidics and OOC in Cancer °
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Previous Research on Microfluidics and OOC in Cancer
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Proposed BioMEMs Solution

We propose an OOC with 2 primary chambers which models a capillary and its surrounding
tumor microenvironment.

Upper Chamber:
e Inlet/outlet flows and pressure mimic a capillary, suspended nanoparticles flow through

e Lined with endothelial cells

Chamber Barrier:
e PDMS membrane with variable porosity coated with ECM proteins for cell adhesion.

Lower Chamber:
e Inlet/outlet flows and pressures are variable for a tunable tumor environment

e Collagen matrix seeded with cancer and other relevant cells depending on modeling desires.

e Two side channels represent lymphatic drainage (can be manipulated for high/low levels of
drainage)
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Fabrication ©

1) Silicon wafer with SU-8

2) Position photomask with channel pattern and
expose mask/resist to UV light

3) “Develop” to dissolve un-polymerized SU-8
4) Cast PDMS

5) Repeat Steps 1-4 to create both top and
bottom chambers

6) Insert porous PDMS membrane between the
PDMS channel chambers and bond after plasma
oxidation
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Seeding Cells and Modulating Permeability

e Before cell seeding, the porous PDMS

membrane is coated with ECM
o Could be composed of collagen, laminin,
fibronectin, etc

e Endothelial Cells (HUVECs) seeded in the
upper chamber via perfusion with shear
stress
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o Permeability can be modulated by delivering
signals like VEGF, TNF-alpha, and fibrinogen. 4

CAF

e The lower chamber’s cancer e
. . . CXCL12-CXCR4 inhibition . AntijFA‘P Ab (sibrotuzumab)
microenvironment consists of cancer cells, (AMD3 100, 1-8040) POl L e

* SHH inhibitors (saridegib, vismodegib)

* Multi-MMP inhibitors (marimastat,
tanomastat)

* Hyaluronidase (PEGPH20)

fibroblasts, and other relevant cells T Bosinlancin
cultured in a collagen hydrogel




Biocompatibility

e This device will not be placed in the body, it merely serves as a (hopefully

improved) in vitro model, so its biocompatibility with the body is not a
concern

e PDMS is known to be highly compatible for mammalian cell culture ’

e Media will be continually perfused to maintain cell viability



Tuning Factor

PDMS

4

Endothelial layer

Extracellular matrix

Immune
system
\\

Interstitial pressure

Variables

e Quantity
e Density
e Size

e Cell type

e Growth factor

e Protein composition

e Surveying immune cell
types in lower chamber

e Flow pressure through
chamber
e Lymphatic channels

Impact

Modulates permeability of modeled capillary

Extravasation/transcellular uptake of
nanoparticles

Stiffness/density of tumor microenvironment;
nanoparticle distribution

Observing immune response to nanoparticles

Diffusion of nanoparticles in various cancer
microenvironments can be observed



&
-~

=
P
3
-
-

D
AN
K
S
-
-
=
&£
",.
’
1

d Dendrimers

a Polymer b Liposomes

€ Gold Nanoparticles f Micelles @ Carbon nanotubes h Quantum dots

Ideally we will use this device to test a variety of nanoparticles with different features
(e.g. materials, coatings, targeting moieties, size, shape)



Testing
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Test Method Transmission electron Fluorescence activated cell Dynamic light scattering (DLS)
microscopy (TEM) and scanning sorting (FACS)
electron microscopy (SEM)
Application Visualization of nanoparticle Quantitative identification of | Determination of nanoparticle
structure, morphology and aggregation
dispersion
Advantages High resolution Multiparameter separation Real time measurement
Disadvantages Sample preparation Needs cell suspensions Sensitivity to solvent viscosity




Limitations
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LIMITATIONS

e |Immune system (macrophages)
Difficulty representing certain cancer types
e Hypovascularization of pancreatic cancer

Cost and resources for device fabrication and maintenance




Benefits and Future Directions

e Provides a cheaper, more tunable, and less variable
solution than animal models

e Representativeness
o Tune ECM and seeded cancer cells to recapitulate
tumor microenvironment specific to different cancers
o Tune to fit different patients

e Could also be used for cancer cell extravasation models

e Incorporate more immune response elements
o Different macrophages

e Improve microfabrication techniques to allow for more
universal use

Recapitulate the
microenvironment
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