

Gut-On-A-Chip to Test for Food Allergies and Intolerances

Annika, Melissa, Nadeen, Taylor

Background

- 32 million people in the US suffer from food allergies
- Food allergies cause immune system dysfunction and painful digestion
- Many people with food allergies try elimination diets
- Lots of failure due to timeliness and difficulty

Current Gaps

Food Sensitivity Tests

- 1. Blood work required
- 2. Does not give good insight into overall digestive dysfunction

Elimination Diets

- . Time-consuming
- 2. Difficult to follow through with

Current common allergy testing methods present a trade off between accuracy and risk of adverse reactions.

Castaño, Nicolas, et al. "Microfluidic Methods for Precision Diagnostics in Food Allergy." Biomicrofluidics, vol. 14, no. 2, Apr. 2020, p. 021503. PubMed Central, https://doi.org/10.1063/1.5144135.

Key Features of the Gut

Transport

Absorb and transport nutrients from digestion to vasculature

Specialized Cells

Microbiomes to make vitamins and break down complex foods

Immunity

Trains the immune system and rids system of pathogens

Structural

Intestinal villi and microvilli increase surface area for nutrient absorption

Mechanical

Peristaltic contractions move food through the GI tract

Ashammakhi, N., Nasiri, R., Barros, N. R., Tebon, P., Thakor, J., Goudie, M., Shamloo, A., Martin, M. G., & amp; Khademhosseini, A. (2020). Gut-on-a-chip: Current progress and future opportunities. Biomaterials, 255. <u>https://doi.org/10.1016/j.biomaterials.2020.120196</u>

Existing Gut-On-A-Chip Models

 Channels and chambers

 Sensors, electrodes, valves

 Gas permeable
 Vascular endothelial cells
 PDMS

Ashammakhi, N., Nasiri, R., Barros, N. R., Tebon, P., Thakor, J., Goudie, M., Shamloo, A., Martin, M. G., & Khademhosseini, A. (2020). Gut-on-a-chip: Current progress and future opportunities. Biomaterials, 255. https://doi.org/10.1016/j.biomaterials.2020.120196

Limitations with Current Technology

- Balance of complexity and relevance
 - o Cost
 - Ease-of-use
- Incorporation of physiologically relevant cells
 - Currently use animal-derived or immortalized cell lines
 - Unable to accurately mimic *in vivo* biology
- Incorporation of biosensors and material that responds to stimuli
- Limited life span of cells on chip

Requirements for Modeling the Gut

Costa J and Ahluwalia A (2019) Advances and Current Challenges in Intestinal in vitro Model Engineering: A Digest. Front. Bioeng. Biotechnol. 7:144. doi: 10.3389/fbioe.2019.00144

Proposed Solution

A gut-on-a-chip system that can diagnose food allergies and sensitivities as well as show the physiological response within the gut with less pain and high accuracy

• What the model will achieve:

- A vasculature of blood vessels that will help us detect the immune cells response
- → Real time measurements of live cells and subcellular processes
- Real mimicking of intracellular gut environment

• Benefits

Design Parameters

Geometric Confinement & Patterning

Incorporating cell samples into the chip Mimicking real cell environment & ECM

Delivering allergen into the chip Biosensing and physiological readouts

Geometric Patterning & Confinement

- Villi created using a dissolvable mold covered in collagen and seeded with cells (current studies use Caco-2 cells)
- Membrane composed of porous PDMS (0.45 um pore size)

Ashammakhi, N., Nasiri, R., Barros, N. R., Tebon, P., Thakor, J., Goudie, M., Shamloo, A., Martin, M. G., & amp; Khademhosseini, A. (2020). Gut-on-a-chip: Current progress and future opportunities. Biomaterials, 255. https://doi.org/10.1016/j.biomaterials.2020.120196

Geometric Patterning & Confinement

- Endothelial cells
- Vacuum chambers assist in peristaltic movement

Ashammakhi, N., Nasiri, R., Barros, N. R., Tebon, P., Thakor, J., Goudie, M., Shamloo, A., Martin, M. G., & amp; Khademhosseini, A. (2020). Gut-on-a-chip: Current progress and future opportunities. Biomaterials, 255. https://doi.org/10.1016/j.biomaterials.2020.120196

Elzinga, J. (2021, November 15). Towards a gut-microbiota-on-a-chip. WUR. Retrieved April 15, 2022, from https://www.wur.nl/en/show/Towards-a-gut-microbiota-on-a-chip.htm

Incorporating Cell Samples into the Chip

- Vascular Network
 HUVECs or HIMECs
- Intestinal Network
 primary human duodenal cells

Mimicking the Real Environment

- Treat the PDMS with O₂ plasma
- Increases hydrophobicity
- Decreases gas escape
- Lasts longer when kept and used in vacuum space

Other Features

- Lumen channel patient's cells
- Vascular channel
- Microvilli
- Contractions

Plasma treatment of PDMS for Microfluidics. Princeton Scientific. (2019, October 16). Retrieved April 17, 2022, from https://princetonscientific.com/plasma-treatment-equipment/plasma-applications/plasma-treatment-of-pdms-for-microfluidics/ Ashammakhi, N., Nasiri, R., Barros, N. R., Tebon, P., Thakor, J., Goudie, M., Shamloo, A., Martin, M. G., & amp; Khademhosseini, A. (2020). Gut-on-a-chip: Current progress and future opportunities. Biomaterials, 255. https://doi.org/10.1016/j.biomaterials.2020.120196

Delivering Allergens

 Need to digest the food that is being tested and then deliver this into the intestinal channel

BioSensing and Physiological Readouts

Biomarkers:

- There's not yet a single universal biomarker to diagnose food allergies.
- Ideal: detect the different biomarkers simultaneously to effectively track the disease

Cytokine Release and inflammation:

Immune cells produce proinflammatory cytokines in response to allergen presence Cyclic mechanical strain and shear stress induced on the villi due to inflammation Visualize: fluorescent micrographs and phase contrast images

Ashammakhi, Nureddin, et al.

Surface Plasmon Resonance

- Examine sensitive changes to optical properties induced by intracellular changes like morphological changes and cell adhesion
- Cell degranulation
- Fix basophils with BA312 antibodies to the sensor surface and capture the change in intensity and in cell refractive index upon activation in real time.

Castaño, Nicolas, et al. "Microfluidic Methods for Precision Diagnostics in Food Allergy." Biomicrofluidics, vol. 14, no. 2, Apr. 2020, p. 021503. PubMed Central, <u>https://doi.org/10.1063/1.5144135</u>.

Fabrication

Elsbeth G.B.M. Bossink, Loes I. Segerink, Mathieu Odijk, Organ-on-Chip Technology for Aerobic Intestinal Host – Anaerobic Microbiota Research, Organs-on-a-Chip, Volume 4, 2022, 100013, ISSN 2666-1020, <u>https://doi.org/10.1016/j.ooc.2021.100013</u>.

Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012 Jun 21;12(12):2165-74. doi: 10.1039/c2lc40074j.

EverlyWell Test Results

0

High Reactivit	y (3 Foods)					
Egg White	0.546 >	Cheese, Cottage	0.457 >	Cheese, Mozzarella	0.427	>
Moderate Rea	<mark>ctivity</mark> (5 Food	's)				
Milk, Cows	0.358 >	Egg Yolk	0.358 >	Kale	0.355	>
Crab	0.324 >	Chia Seed	0.316 >			

- Compare to food sensitivity tests or elimination diets
- Compare immune response to reactions from other allergens (same patient)

Testing

• Variety of tests to verify the results

Limitations

- **1.** Sourcing cells from specific patients to test
- 2. Cost
- 3. Time to Manufacture
- 4. Does not account for interaction with other organ systems

Summary

• New gut-on-a-chip model to test for food allergies and

intolerances

Combine characteristics from existing chip models

Questions

References

- Ashammakhi, N., Nasiri, R., Barros, N. R., Tebon, P., Thakor, J., Goudie, M., Shamloo, A., Martin, M. G., & amp; Khademhosseini, A. (2020). Gut-on-a-chip: Current progress and future opportunities. Biomaterials, 255. <u>https://doi.org/10.1016/j.biomaterials.2020.120196</u>
- 2. Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012 Jun 21;12(12):2165-74. doi: 10.1039/c2lc40074j.
- 3. Marzorati, M., Vanhoecke, B., De Ryck, T. et al. The HMI[™] module: a new tool to study the Host-Microbiota Interaction in the human gastrointestinal tract in vitro . BMC Microbiol 14, 133 (2014). https://doi.org/10.1186/1471-2180-14-133
- 4. Elzinga, J. (2021, November 15). Towards a gut-microbiota-on-a-chip. WUR. Retrieved April 15, 2022, from https://www.wur.nl/en/show/Towards-a-gut-microbiota-on-a-chip.
- 5. Costa J and Ahluwalia A (2019) Advances and Current Challenges in Intestinal in vitro Model Engineering: A Digest. Front. Bioeng. Biotechnol. 7:144. doi: 10.3389/fbioe.2019.00144
- 6. Elsbeth G.B.M. Bossink, Loes I. Segerink, Mathieu Odijk, Organ-on-Chip Technology for Aerobic Intestinal Host – Anaerobic Microbiota Research, Organs-on-a-Chip, Volume 4, 2022, 100013, ISSN 2666-1020, https://doi.org/10.1016/j.ooc.2021.100013.
- 7. Castaño, Nicolas, et al. "Microfluidic Methods for Precision Diagnostics in Food Allergy." Biomicrofluidics, vol. 14, no. 2, Apr. 2020, p. 021503. PubMed Central, <u>https://doi.org/10.1063/1.5144135</u>.
- 8. Plasma treatment of PDMS for Microfluidics. Princeton Scientific. (2019, October 16). Retrieved April 17, 2022, from

https://princetonscientific.com/plasma-treatment-equipment/plasma-applications/plasma-treatment-ofpdms-for-microfluidics/

 Fadini, G. P., & amp; Avogaro, A. (n.d.). Cell-based methods for ex vivo evaluation of human endothelial biology. Academic.oup.com. Retrieved April 18, 2022, from https://academic.oup.com/cardiovascres/article/87/1/12/333912