

0

0

....

米

*

*

Andre-Claude, Brady, Ian, and Ian

()

+

+

 \bigcirc

The golgi tendon organ (GTO) functions to give the brain proprioception to its skeletal muscles

• Stress Sensitive Cation Channel

There are key barriers to creating GTO on a chipNeurotendinous spindle structure

Muscle on a chip models havebeen previously developedGTO behavior not isolated

0

 \bigcirc

三+

 \bigcirc

*

Stress activated channels are applicable to approximations of other bodily systems:

- Inner ear
- Lungs

0

• Bladder

 \bigcirc

 \bigcirc

There are diseases associated with muscle function that can be more easily studied with muscle on a chip models

• Cachexia

0

• Sarcopenia

Metformin (treats diabetes)

Ο

• Statin (treats high cholesterol)

 \bigcirc

<u>=</u>+

- Simulate GTO operation
- Inspired by pulmonary and muscle specific BioMEMS devices
- All-in-one design
 - Cell culture
 - Cell stretching
 - Golgi tendon simulation
- Open or closed-loop feedback operation
 - Calibration

• Comparison

 \bigcirc

 \square

- Vacuum channels
- Blood channels

0

- Ionic solution channel (3)
- Test solution channel (FET location)

(1)

(2)

(4)

(4.1)

Polymer base PDMS structural layer PDMS membrane layer

쑸

 \bigcirc

0

- 1 Controller
- 3 Peristaltic pumps
- 2 Vacuum pumps
- 3 independent circuits
 - Oxygen rich blood
 - High concentration ion solution
 - Test solution (filtered)
- FET and Capacitive pressure sensor feedback

Base Plate Fabrication

• Silicon Surface Micromachining

- Fully compatible with microfluidic sensors
- Low Cost

• LIGA

0

쑸

- Constructs microstructures made of polymers, ceramics, metals, etc.
- Easily integratable with biomimetic sensors
 - Force/pressure changes resistivity of conductive polymers
 - Can act as actuator between systems

 \bigcirc

三+

*Membrane Fabrication

- Needs to behave similar to a GTO
- Stretching activated by two collagen sections
 - Innervated collagen near center of structure
 - Packed with GTO afferents
 - Stretches and aligns when activated
 - Dense collagen forming capsule surface
 - Don't interact with afferent
 - Packed tighter near ends of GTO
- Create similar collagen network without muscle fibers, tendon, of afferent

$$T^{col} {=} K^{col} {\times} A^{col} {\times} sign \ (x {-} x_{rest}) {\times} \ \left\{ \ \left[\frac{abs \ (x {-} x_{rest}) {+} x_{rest}}{x_{rest}} {-} 0.99 \right]^3 {-} 10^{-6} \right] \right\}$$

 \bigcirc

* Biomimetic Membrane Sensors

• Piezoelectric Pressure Sensor

0

- \circ Used on small, deflectable membranes
- Deflection \rightarrow Change in resistance

- Capacitive pressure sensor
 Uses change in capacitance
 - between two metal plates
 - Higher linearity, sensitivity, and stability
 - Higher production cost and less
 effective for complex signals

 \bigcirc

Ξ+

Ion Membrane Fabrication

• Pores open via vacuum stretching

- Activated when capacitor displacement is detected
- PDMS layer
 - \circ Highly flexible to deform with the vacuum

• Fluorine based Reactive Ion Etching

Complements molding with SU-8 photoresist

Biocompatibility

External device with no body contact:

• No ISO of FDA requirements

Material requirements:

- Membrane
 - Skeletal muscle growth
 - Channel geometry for ion transfer
- Channel structure
 - Limiting ion absorption and diffusion
- Effective ion filters for FET unsaturation

三+

 \odot

*

Testing (1)

 \bigcirc

Golgi Tendon Property

Tension Proportionality (Steady State GTO Activation is Linearly Proportional to Muscle Tension) [10]

Method for Testing

Apply constant voltage to FET, apply range of vacuum pressures in chambers. Graph FET current (as t -> inf) against vacuum pressure:

Testing (2)

 \bigcirc

Golgi Tendon Property

Stress Relaxation (GTO Typically modeled as Standard Linear Viscoelastic Solid) [8]

Method for Testing

Apply constant strain in vacuum chambers, apply constant voltage to FET, verify FET current resembles:

Testing (3)

Golgi Tendon Property

Creep (GTO Typically modeled as Standard Linear Viscoelastic Solid) [1]

Method for Testing

Apply constant stress in vacuum chambers, apply constant voltage to FET, verify FET current resembles:

Testing (3)

Golgi Tendon Property

Summation Response (GTO Activity increases as more motor units engaged) [8]

C

Method for Testing

Apply constant voltage to FET, apply vacuum pressure as series of step functions with diminishing amplitude increases. [8] Verify FET current resembles:

Golgi Tendon Property

Method for Testing

Ion Selectivity (Stretch Sensitive Ion Channels are only meant to release Ca+)

0

Repeat stress relaxation test with Na+ in ion chamber:

Testing (4)

Golgi Tendon Property

Extracellular Calcium concentration dissipates after Golgi Tendon activation ends

Method for Testing

Apply constant isFET voltage and pressure, wait until isFET current reaches steady state, then deactivate pressure chambers:

[11]

Testing (5)

Golgi Tendon Property

Reflex (GTO works to prevent harmful levels of muscle tension) [12]

Method for Testing

Apply linearly increasing vacuum pressure, verify GTO feedback downsteps vacuum at set value:

Force Threshold (Current Max Force Levels At)

Limitations

- No proper modeling of action potential or nerve fibers
- 2. Only modeling one GTO fiber

- 3. In a true GTO, passive stretch doesn't cause activation
- 4. Standard linear elastic solid is an approximation of material properties

*

Conclusion

- GTO/Muscle on a chip not fully developed
- Device limited to full GTO scale, but models main ion activation behavior
- Future Directions
 - Device dimensioning
 - Test how GTO responds to different drugs
 - Model different disease state responses
 - Apply principles to model other mechanosensitive channels in the body
 - Future Improvements/Revisions
 - Populate with true mechanosensitive channels
 - Integrate with nervous system on a chip

쑸

- [1] <u>https://www.physio-pedia.com/Golgi_Tendon_Organ</u>
- [2] https://www.chegg.com/learn/biology/anatomy-physiology-in-biology/function-of-muscle-spindle
- [3] <u>https://doi.org/10.1039/C7LC00512A</u>
- [4] <u>https://www.researchgate.net/publication/260677116</u>
- [5] <u>https://m.facebook.com/nationalptiarizona/photos/a.602912760045736/1155165841487089/?type=3</u>
- [6] https://www.saintlukeskc.org/health-library/rhabdomyolysis

[7]

https://www.researchgate.net/figure/Scheme-of-the-process-sequence-in-LIGA-a-spin-coating-and-baking-b-microli thography_fig3_343089610

[8] https://journals.physiology.org/doi/full/10.1152/jn.00869.2005

[9]Dario, Paolo & Laschi, Cecilia & Micera, Silvestro & Vecchi, Fabrizio & Zecca, Massimiliano & Menciassi, Arianna & Mazzolai, Barbara & Carrozza, Maria. (2003). Biologically-Inspired Microfabricated Force and Position Mechano-Sensors. 10.1007/978-3-7091-6025-1_8.

[10] https://journals-physiology-org.ezp2.lib.umn.edu/doi/epdf/10.1152/physrev.1992.72.3.623

[11] https://wikispaces.psu.edu/display/Biol230WFall09/Passive+and+Active+Transport

[12] Hall & Guyton (2006), Golgi Tendon Reflex, pp. 679–680

[13]

0

https://content.byui.edu/file/a236934c-3c60-4fe9-90aa-d343b3e3a640/1/module9/readings/somatic_reflexes.html

- [15] https://journals.physiology.org/doi/full/10.1152/jn.00869.2005
- [16] https://www.nature.com/articles/s41598-018-20729-y

[17] https://avs.scitation.org/doi/10.1116/1.1460896

