
Last Update 12/18/2023

Lab 7: Microcontroller Motor Interfacing
BMEn 2151 “Introductory Medical Device Prototyping”

Prof. Steven S. Saliterman

Exercise 7.1: Using the Adafruit Motor Shield Operate
Different Motors
Objective: To become acquainted with DC, stepping and servo motors.

Items Used in this Lab
Here are some additional items to be used for this lab. This lab will demonstrate interfacing
Arduino Uno with three different kinds of motors using the Adafruit motor shield.

Task
1. Obtain the Adafruit Motor Shield from the Project Box. This board contains the necessary
PWM chip and motor drivers to operate a variety of motors. You can learn more about this
board at the following link: Adafruit MotorShield

Motor Shield DC Motor with Gear

Stepper Motor Servo Motor

Page 2

Prof. Steven S. Saliterman Labs should be done under supervision.

These are the features of the Adafruit Motor Shield:

• Dedicated PWM driver chip onboard. This chip handles all the motor and speed
controls over I2C.

• Only two pins (SDA & SCL) are required to drive the multiple motors, and since it's
I2C you can also connect any other I2C devices or shields to the same pins. This also
makes it drop-in compatible with any Arduino, such as the Uno, Due, Leonardo and
Mega R3.

• Completely stackable design: 5 address-select pins means up to 32 stackable shields:
that's 64 steppers or 128 DC motors.

• 4 H-Bridges: TB6612 chipset provides 1.2A per bridge (3A for brief 20ms peaks) with
thermal shutdown protection, internal kickback protection diodes. Can run motors
on 4.5VDC to 13.5VDC.

• Up to 4 bi-directional DC motors with individual 8-bit speed selection (so, about
0.5% resolution).

• Up to 2 stepper motors (unipolar or bipolar) with single coil, double coil, interleaved
or micro-stepping.

• Motors automatically disabled on power-up.
• Big terminal block connectors to easily hook up wires (18-26AWG) and power
• Arduino reset button brought up top.
• Polarity protected 2-pin terminal block and jumper to connect external power, for

separate logic/motor supplies.

Motor connections. A DC motor, servo motor and stepping motor
will all be connected to the motor shield stacked with the Arduino

Page 3

Prof. Steven S. Saliterman Labs should be done under supervision.

2. Assemble the motor shield interconnecting pins.
If the Adafruit motor Shield is still in its pink bubble wrap unassembled, it will
be necessary to solder to it the Arduino Uno interconnecting pins.

Using your wire cutter, snip the header pins into sections as shown above –
just enough pins to match the corresponding female connectors on the
Arduino Uno. Next place long end of the header pins into the matching
Arduino Uno female connector. Place the motor shield on top of the short
pins, squeeze together, and solder the short pins to the motor shield. The two
boards may be pulled apart now – or continue to the following exercise.

3. Take photographs of your setup.

Page 4

Prof. Steven S. Saliterman Labs should be done under supervision.

Exercise 7.2 Connect Boards and Install Software

1. If not already done, carefully stack your Arduino to the motor shield. You will be
powering the motors from your computer USB port. You will next need to download the
Adafruit Motor Shield library (these procedures might change over time).

2. Go to the following website: https://learn.adafruit.com/adafruit-motor-shield-v2-for-
arduino/install-software and review the page.

Next follow the link to GitHub:
https://github.com/adafruit/Adafruit_Motor_Shield_V2_Library.

Select the green “download code” button (upper right), select “download ZIP” and save to
your desktop.

3. Open your Arduino IDE. Under the menu item “Sketch”, select “Include Library”, then
“Add .ZIP Library…”. Find your downloaded ZIP file from your desktop and select it.

Update April 14, 2022:

A. Go to the menu item “Tools” and select “Manage Libraries.”
B. In the dialog that appears, type in the search box: “Adafruit V2”.
C. Scroll through the list to “Adafruit Motor Shield V2 Library” and click “Install All.”

If you now go back to “Include Library”, and scroll to the bottom, you should see the file
“Adafruit Motor Shield V2 Library” listed.

Page 5

Prof. Steven S. Saliterman Labs should be done under supervision.

4. Copy and paste the code in your Arduino IDE for Exercise 7.2 from the Word document
available on our course website under “Additional Lab Items/Program Code for Labs 6 & 7”:
Motor Party Code.

5. From past experience it is better to connect the DC motor first then servo motor and then
the stepping motor, testing each motor first as it is added. Disconnect the USB cable from
the computer when attaching each motor. You may need to connect only one motor at a
time because of limited power available from your computer. You may also be able to
quickly change from the computer USB power to the Arduino power adaptor, then reset the
Arduino, and all the motors should run.

Connection of the DC motor (foreground), servo motor (upper left), USB A-B
computer cable (left) and jumper cap (green power light should be ON).

Connection of the servo motor using Dupont male-male jumper leads. Order is
important: Orange – Purple (for Pink) - Red – Blue - Yellow at the Arduino.

Page 6

Prof. Steven S. Saliterman Labs should be done under supervision.

6. Study the following Adafruit “MotorParty” sketch until you understand each function (see
Appendix: Library Interface):

/*
This is a test sketch for the Adafruit assembled Motor Shield for Arduino v2
It won't work with v1.x motor shields! Only for the v2's with built in PWM
control

For use with the Adafruit Motor Shield v2
----> http://www.adafruit.com/products/1438

This sketch creates a fun motor party on your desk *whiirrr*
Connect a unipolar/bipolar stepper to M3/M4
Connect a DC motor to M1
Connect a hobby servo to SERVO1
*/

#include <Wire.h>
#include <Adafruit_MotorShield.h>
#include "utility/Adafruit_MS_PWMServoDriver.h"
#include <Servo.h>

// Create the motor shield object with the default I2C address
Adafruit_MotorShield AFMS = Adafruit_MotorShield();
// Or, create it with a different I2C address (say for stacking)
// Adafruit_MotorShield AFMS = Adafruit_MotorShield(0x61);

// Connect a stepper motor with 200 steps per revolution (1.8 degree)
// to motor port #2 (M3 and M4)
Adafruit_StepperMotor *myStepper = AFMS.getStepper(200, 2);
// And connect a DC motor to port M1
Adafruit_DCMotor *myMotor = AFMS.getMotor(1);

// We'll also test out the built in Arduino Servo library
Servo servo1;

void setup() {
 Serial.begin(9600); // set up Serial library at 9600 bps
 Serial.println("MMMMotor party!");

 AFMS.begin(); // create with the default frequency 1.6KHz
 //AFMS.begin(1000); // OR with a different frequency, say 1KHz

Page 7

Prof. Steven S. Saliterman Labs should be done under supervision.

 // Attach a servo to pin #10
 servo1.attach(10);

 // turn on motor M1
 myMotor->setSpeed(200);
 myMotor->run(RELEASE);

 // setup the stepper
 myStepper->setSpeed(10); // 10 rpm
}

int i;
void loop() {
 myMotor->run(FORWARD);
 for (i=0; i<255; i++) {
 servo1.write(map(i, 0, 255, 0, 180));
 myMotor->setSpeed(i);
 myStepper->step(1, FORWARD, INTERLEAVE);
 delay(3);
 }

 for (i=255; i!=0; i--) {
 servo1.write(map(i, 0, 255, 0, 180));
 myMotor->setSpeed(i);
 myStepper->step(1, BACKWARD, INTERLEAVE);
 delay(3);
 }

 myMotor->run(BACKWARD);
 for (i=0; i<255; i++) {
 servo1.write(map(i, 0, 255, 0, 180));
 myMotor->setSpeed(i);
 myStepper->step(1, FORWARD, DOUBLE);
 delay(3);
 }

 for (i=255; i!=0; i--) {
 servo1.write(map(i, 0, 255, 0, 180));
 myMotor->setSpeed(i);
 myStepper->step(1, BACKWARD, DOUBLE);
 delay(3);
 }
}

7. Take photographs of your setup.

Page 8

Prof. Steven S. Saliterman Labs should be done under supervision.

Exercise 7.3 Write Your Own Program

Think of your own motor application, and write the necessary code. Here are two possible
examples:
1. Use a potentiometer to change the speed of a DC motor (easy – look back to Lab 6).
2. Use a potentiometer to make a servo motor turn to a precise angle (more difficult).

Write your final tested code with comments here (afterwards, look at the code example
that follows to see how to do (1) above):

_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________
_________________________________ _____________________________________

Page 9

Prof. Steven S. Saliterman Labs should be done under supervision.

Here is a solution to (1) above - using a potentiometer to change the speed of a DC motor
(thank you Theodore Kakacek).

#include <Adafruit_MotorShield.h>
#include <Wire.h>
#include <Adafruit_MotorShield.h>
#include "utility/Adafruit_MS_PWMServoDriver.h"
#include <Servo.h>
const int analogPin = A0;

Adafruit_MotorShield AFMS = Adafruit_MotorShield(); // motor shield object Adafruit_DCMotor
*myMotor = AFMS.getMotor(1); // DC motor

void setup()
{
 AFMS.begin();
 myMotor -> setSpeed(200);
 myMotor -> run(RELEASE);
}

void loop()
{
 myMotor->run(FORWARD);
 int analogValue = analogRead(analogPin);
 analogValue = map(analogValue, 0, 1023, 0, 255);
 myMotor->setSpeed(analogValue);
 delay(3);
}

Page 10

Prof. Steven S. Saliterman Labs should be done under supervision.

Background Information on the Library Interface (Courtesy of Adafruit)

class Adafruit_MotorShield;
The Adafruit_MotorShield class represents a motor shield and must be instantiated before any DCMotors or
StepperMotors can be used. You will need to declare one Adafruit_MotorShield for each shield in your system.

Adafruit_MotorShield(uint8_t addr = 0x60);
The constructor takes one optional parameter to specify the i2c address of the shield. The default address of
the constructor (0x60) matches the default address of the boards as shipped. If you have more than one shield
in your system, each shield must have a unique address.

void begin(uint16_t freq = 1600);
begin() must be called in setup() to initialize the shield. An optional frequency parameter can be used to
specify something other than the default maximum: 1.6KHz PWM frequency.

Adafruit_DCMotor *getMotor(uint8_t n);
This function returns one of 4 pre-defined DC motor objects controlled by the shield. The parameter specifies
the associated motor channel: 1-4.

Adafruit_StepperMotor *getStepper(uint16_t steps, uint8_t n);
This function returns one of 2 pre-defined stepper motor objects controlled by the shield. The first parameter
specifies the number of steps per revolution.
The second parameter specifies the associated stepper channel: 1-2.

void setPWM(uint8_t pin, uint16_t val);
void setPin(uint8_t pin, boolean val);
These are low-level functions to control pins on the on-board PWM driver chip. These functions are intended
for internal use only.

Page 11

Prof. Steven S. Saliterman Labs should be done under supervision.

class Adafruit_DCMotor
The Adafruit_DCMotor class represents a DC motor attached to the shield. You must declare an
Adafruit_DCMotor for each motor in your system.

Adafruit_DCMotor(void);
The constructor takes no arguments. The motor object is typically initialized by assigning a motor object
retrieved from the shield class as below:

• // Create the motor shield object with the default I2C address
Adafruit_MotorShield AFMS = Adafruit_MotorShield();

• // Select which 'port' M1, M2, M3 or M4. In this case, M1
Adafruit_DCMotor *myMotor = AFMS.getMotor(1);

• // You can also make another motor on port M2
Adafruit_DCMotor *myOtherMotor = AFMS.getMotor(2);

void run(uint8_t);
The run() function controls the motor state. The parameter can have one of 3 values:

• FORWARD - Rotate in a forward direction
• REVERSE - Rotate in the reverse direction
• RELEASE - Stop rotation

Note that the "FORWARD" and "REVERSE" directions are arbitrary. If they do not match the actual direction of
your vehicle or robot, simple swap the motor leads.

Also note that "RELEASE" simply cuts power to the motor. It does not apply any braking.

void setSpeed(uint8_t);
The setSpeed() function controls the power level delivered to the motor. The speed parameter is a value
between 0 and 255.

Note that setSpeed just controls the power delivered to the motor. The actual speed of the motor will depend
on several factors, including: The motor, the power supply and the load.

Page 12

Prof. Steven S. Saliterman Labs should be done under supervision.

class Adafruit_StepperMotor
The Adafruit_StepperMotor class represents a stepper motor attached to the shield. You must declare an
Adafruit_StepperMotor for each stepper motor in your system.

Adafruit_StepperMotor(void);
The constructor takes no arguments. The stepper motor is typically initialized by assigning a stepper object
retrieved from the shield as below:

• // Create the motor shield object with the default I2C address
Adafruit_MotorShield AFMS = Adafruit_MotorShield();

• // Connect a stepper motor with 200 steps per revolution (1.8 degree)
• // to motor port #2 (M3 and M4)

Adafruit_StepperMotor *myMotor = AFMS.getStepper(200, 2);

void step(uint16_t steps, uint8_t dir, uint8_t style = SINGLE);
The step() function controls stepper motion.

• The first parameter specifies how many steps to move.
• The second parameter specifies the direction: FORWARD or BACKWARD
• The last parameter specifies the stepping style: SINGLE, DOUBLE, INTERLEAVED or MICROSTEP
The ste() function is synchronous and does not return until all steps are complete. When complete the
motor remains powered to apply "holding torque" to maintain position.

void setSpeed(uint16_t);
The setSpeed() function controls the speed of the stepper motor rotation. Speed is specified in RPM.

uint8_t onestep(uint8_t dir, uint8_t style);
The oneStep() function is a low-level internal function called by step(). But it can be useful to call on its own to
implement more advanced functions such as acceleration or coordinating simultaneous movement of multiple
stepper motors. The direction and style parameters are the same as for step(), but onestep() steps exactly
once.

Note: Calling step() with a step count of 1 is not the same as calling onestep(). The step function has a delay
based on the speed set in setSpeed(). onestep() has no delay.

void release(void);
The release() function removes all power from the motor. Call this function to reduce power requirements if
holding torque is not required to maintain position.

Page 13

Prof. Steven S. Saliterman Labs should be done under supervision.

Servo
Referring to the Arduino Servo Library

attach(int pin)
Associates the Servo object with the given pin.

attach(int pin, int min, int max)
Associates the Servo object with the pins and sets of the pulse widths for the min/max servo angle

attached()
Returns 1 if the servo is attached to a pin and 0 if not.

detach()
Used to delete the association between the Servo object and its pin.

write(int angle)
Used to set the servo’s angular position.

writeMicroseconds(int time)
Used to set the pulse width of the signal delivered to the servo.

read()
Returns the last angle written to the servo.

Other
Other useful functions

map()
map(value, fromLow, fromHigh, toLow, toHigh)

• Does not constrain values to within the range, because out-of-range values are sometimes intended
and useful.

• The constrain() function may be used either before or after this function, if limits to the ranges are
desired.

• The map() function uses integer math so will not generate fractions, when the math might indicate
that it should do so. Fractional remainders are truncated, and are not rounded or averaged.

• Note that the "lower bounds" of either range may be larger or smaller than the "upper bounds" so
the map() function may be used to reverse a range of numbers.

End of Microcontroller Motor Interfacing

