The Product Development **Process for Medical** Devices – **A Practical Example**

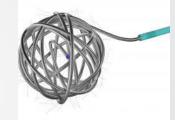
by

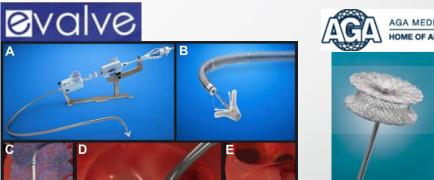
Amy Trocke

Nov. 15, 2022

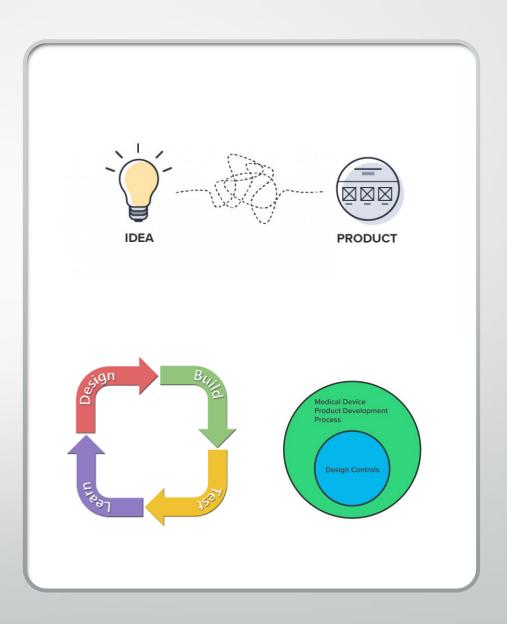
Agenda

- Brief Introduction
- What is Product Development?
- Design Controls
- Product Development Process
 - Phase 1
 - Phase 2
 - Phase 3
 - Design Verification
 - Design Validation
 - Phase 4
 - Result
- Q & A


WhoIAm


- 25-year industry veteran
- BS in Biomedical Engineering from Northwestern University
- MS in Management of Technology from the University of MN
- Current position: Sr. Engineering Manager of Structural Integrity within Structural Heart (heart valves) at Medtronic
- Previous Positions:
 - Director of Product Development at Surmodics
 - Principal R&D Engineer at St. Jude Medical, AGA, & Acist
 - Other R&D Engineering roles at Stereotaxis, Evalve, Micrus, and Angioguard

Patented Inventor: 18 granted patents, 27 patent applications

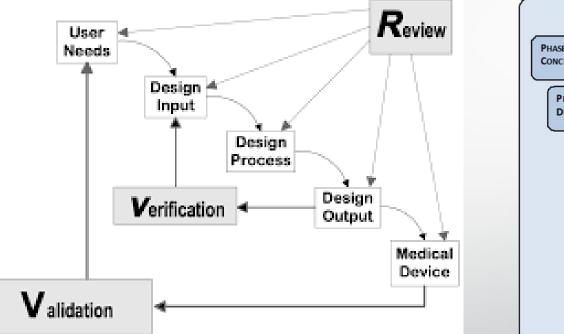


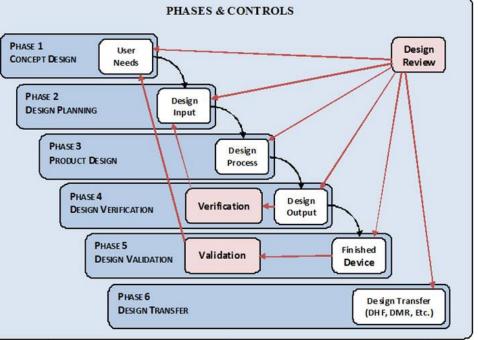
What is Product Development?

- Product development is the process bringing a product from concept or idea to market release and commercialization.
- For engineers, this means design, build, test, learn, repeat.
- For engineers in medical devices, this also means design controls per FDA 820.30 and ISO 13485:2016. Design controls involve design planning to establish, maintain, and document design and development activities. They identify, describe, and define interfaces, responsibilities, and activities impacting device design. They also involve review, documentation, approval, and updates as development and changes occur.

Design Controls: FDA 820.30 & ISO 13485

Both FDA Design Controls and ISO 13485 Design and Development requirements expect you to keep documentation and records through the product development process.


Ultimately, design outputs needs to meet design inputs and the finished device needs to meet the user needs.


Design controls to build quality, safety, effectiveness and savings into your medical device.

Design Controls FDA 820.30	Design & Development ISO 13485:2016
(a) General	7.3.1 General
(b) Design and development planning	7.3.2 Design and development planning
(c) Design input	7.3.3 Design and development inputs
(d) Design output	7.3.4 Design and development outputs
(e) Design review	7.3.5 Design and development review
(f) Design verifications	7.3.6 Design and development verification
(g) Design validation	7.3.7 Design and development validation
(h) Design transfer	7.3.1 General Iopment planning 7.3.2 Design and development planning 7.3.3 Design and development inputs 7.3.4 Design and development outputs 7.3.5 Design and development review ns 7.3.6 Design and development verification n 7.3.8 Design and development transfer 7.3.9 Control of design and development
(i) Design changes	
(j) Design history file	7.3.10 Design and development files

Product Development Process

Design outputs must meet design inputs

FDA Design Control Guidance 21 CFR 820.30

Definition: Design Input

Per 21 CFR 820.30(c):

Design inputs are the physical and performance characteristics of a device that are used as a basis for device design.

It is expected that procedures are established and maintained for Design Input:

- Ensure requirements are appropriate by addressing user needs and intended use(s) in terms that are measurable.
- Address incomplete, ambiguous, or conflicting requirements.
- Document, review, and approve input requirements.

Examples of Design Input:

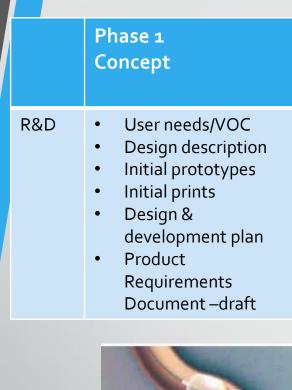
- Device functions
- Physical characteristics
- Performance
- Safety
- Reliability
- Standards
- Regulatory requirements

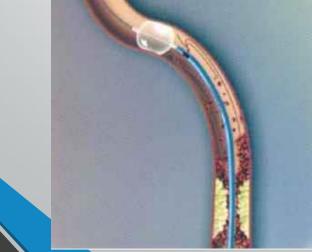
- Human factors
- Labeling & packaging
- Maintenance
- Sterilization
- Compatibility with other devices
- Environmental limits

Practical Example: User Need Example: "Portable" Define as "End user must hand carry device" Consider dimensions and weight Identify conflicting requirements (different units of measure) -> 5 lbs ± 1 kg Resolve discrepancies -> 5 lbs ± 1 lbs

Definition: Design Output

Per 21 CFR 820.30(d):


Design outputs are the results of a design effort at each design phase and at the end of the total design effort.


It is expected that procedures are established and maintained for Design Output:

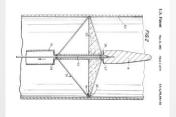
- Define and document design output in terms that allow an adequate evaluation of conformance to design input. (Appropriate testing)
- Reference definable/measurable acceptance criteria.
- Identify design outputs essential for the proper functioning of the device.
- Document, review, and approve output before release.

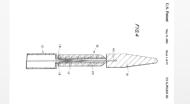
Typical Product Development Process (from an R&D perspective)

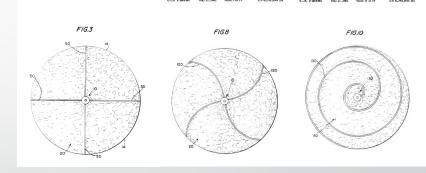
	Phase 1 Concept	Phase 2 Development	Phase 3 Design Verification & Validation	Phase 4 Design Transfer to Manf.	Phase 5 Production/ Commercializ'n
R&D	 User needs/VOC Design description Initial prototypes Initial prints/specifications Design & development plan Product Requirements Document –draft 	 PRD- final Mature prototypes Test Methods Design Verification Plan Final Prints Representative Des processes 			Support as Needed
DA	 Risk Management Plan Hazard Analysis DHF 	 DFMEA UFMEA Quality Plan DHF 	 Risk Management Report DHF 	 Update/Maintain Risk Management Report 	
RA	Regulatory Strategy	Standards List	 Regulatory Submissions 	n/a	
Manf	n/a	 Draft Manufacturing Processes 	 Manufacturing Transfer Plan Device Master Record 	 Manufacturing Transfer Process Validation 	

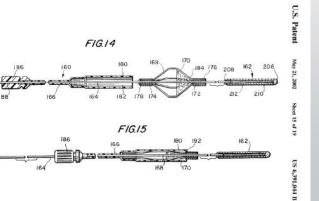
1998

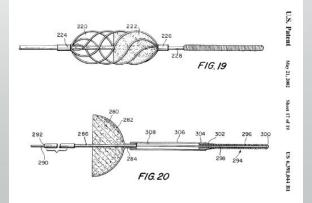
VOC: Jay Yadav, an interventional cardiologist, wanted to design and develop a device to filter emboli from the blood during the treatment of vascular stenosis. Initially, he wanted to treat the carotid arteries during either endarterectomy or angioplasty. In this way, the brain is protected. Initially, the company pursued a less risky regulatory path with a coronary artery indication.

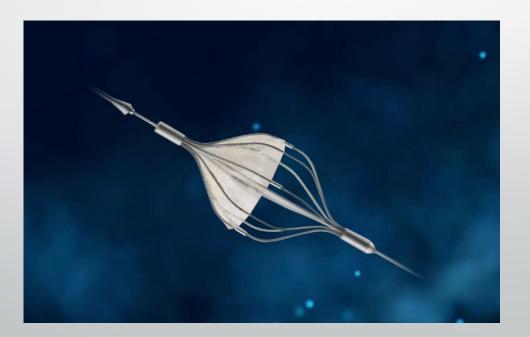

Competition: PercuSurge GuideWire System, which was indicated for carotid angioplasty. It's a balloon-tipped guidewire with an aspiration device for removing plaque and debris loosened during revascularization. It's also defined as a distal occlusion balloon protection device.


VOC: Jay also wanted to maintain blood flow, and he described his concept as a filter on a wire made with a "gossamer" material.


Phase 1 Concept R&D User needs/VOC • **Design description** Initial prototypes Initial prints Design & development plan Product Requirements Document – draft United States Paten


	l'adav e	t al.		Date of Patent: May 21, 2002							
(54)	VASCUL	AR FILTER SYSTEM		FOREIGN PATENT DOCUMENTS							
(75)	Inventors:	Jay S. Yadav, South Rossell, OH (US); Grugg S. Satton, Maple Goove, MN (US); Any Rastilika, Minnespolis, MN	EP GB WO	737/60 10(196- 2008/7 11/1979 W0/96/01/991 1/1996							
		(US); Thomas Berillo, Plymouth, MN (US)		OTHER PUBLICATIONS							
(73)	Assigna:	Angioguard, Inc., Phymouth, MN (US)	Archive	et al., "Prophylaxis of Putnemary Embolism," s of Surgery, vol. 97, Aug. 1918, pp. 548 et soq. oki, et al., "A New Internaval Filter Permittion Con- oki, et al., "A New Internaval Filter Permittion Con-							
(*)	Notice:	Subject to any disclaimer, the term of this patent is extended or adjusted under 35	time ed 1	flow and Resolution of Emboli," Sargery, vol. 73.							
		U.S.C. 154(b) by 0 days.	Cragge	pp. 509–606. 1 al., "A New Percetanoons Vena Cava Filter", A/R							
(21)	Appl. No.	98(249,377	Crage of	p. 1983, pp. 601-604. t al., "Norsurgical Placement of Arterial Endopers-							
(22)	Filed:	Feb. 12, 1999	1983, p	A New Technique Using Nitiaol Wire", AJR, Apr p. 261–263.							
	Ref	lated U.S. Application Data	Lund et al., "Long-term Patency of the Doctos Americaus After Bolloon Dilutations An Experimental Study" AJR, Sen.								
	Oct. 2, 198 03/794.011	c) in part of application No. 001257753, filed on 8, and a continuation-lo-part of application No., filed on Feb. 3, 1997, new abundant. application No. 60100,228, filed on Sep. 21,	1983, pp 772. M.H. Wholey et al., "PTA and Scents in the Treatment of Extracantial Circulation", <i>Journal of Invasire Confidency</i> ,								
	1998, parel 21, 1998, p Sep. 21, 19	alonal application No. 60/101.227, filed on Sep. covisional application No. 60/101.228, filed on 95, and prevenienal opplication No. 60/101.171.	Primar	Suppl. E, 1996, pp. 25E–30E. - ExaminerMichael H. Thaler							
	filed on Sep	A41M 29/00	(74) Advrney, Agont, or Firm-Cohen, Liebowitz Lateran, P.C.; William H. Dippert; Paul A. Colerti								
(52)	U.S. CL	606(20)	(57)	ABSTRACT							
(58)	Field of S	earch	Arone	vable vascalar filter system for Nocking micro- and mboli, while allowing the continued perfusion of							
(56)		References Cited	blood -	comprises a filter membrane positioned on a ire, wherein a free and of the membrane sits tightly							
	U.	S. PATENT DOCUMENTS	ignits	the guidewire when the filter membrane is in a							
	352,747 A 348,829 A	9/1962 Moti	deployi	of state and wherein the filter has a means for ing the filter membrane to assume a position substan- renal to the longitudinal axis of the unidewire. The							
	425.908 A (619.246 A			embrane is comprised of a fine mesh material which							
	/88,553 A		bas a p	ree size capable of blocking emboli while allowing							
	706.671 A			od blood flow, a preferred embodiment of which							
	727,873 A		compris	as regularly spaced, laser-formed holes.							
	(L	ist continued on next page.)		34 Claims, 19 Drawing Sheets							
			169	170							
	186	160 180	100	184 176 208 162 206							
	-	1									

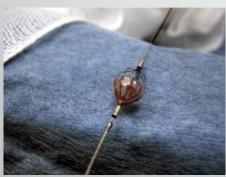

Initial Prototyping:
Acquired standard 0.014" guidewires.
Tried various filter materials including woven materials
What pore size? Porosity? How would it attach to a support structure? How would it be delivered?
Acquired metal wire for support structure





Key technologies during development:

- Guidewire technology
- NiTi shape-memory alloy, shape set using superelastic properties
- Polymer dipping
- Laser ablation to "drill" the holes in the filter
- Thermal bonding
- Adhesives
- Polymer extrusion



Phase 1 Concept

- R&D
 - Design description

User needs/VOC

- Initial prototypes
- Initial prints
- Design & development plan
- Product Requirements Document – draft

	Phase 1 Concept	Technology	Supplier/Partner	
R&D	User needs/VOC	Guidewire Technology	Lake Region Medical	
	 Design description Initial prototypes Initial prints Design & development plan Product 	NITI SMA	NDC?, Confluent, Ft. Wayne, Resonetics	search Nitinol Strain
V	Requirements Document –draft	Polymer Dipping	Polyzen	
B	Coll nosecone Distal marker band Distal marker band Polyurethane membrane	Laser ablation	Spectralytics	There is not been been been been been been been bee
Nitinoi struts	(100 micron pares)	Thermal Bonding	Beahm	
Radiopaque	e marker — O Proximal marker band — O Guidewire (180 cm wire length) — O	Metal Marker Bands	Johnson Matthey	Metal marker band

Product Specification Example Clinical **Clinical/User Requirement** Design **Design Input Requirement** Specification Source/Rationale Test Method Input Use Reg # Reg # Functional/Mechanical Requirements 1 The Device shall reach the 1.1 Flexibility The deflection force of Specification set based on TP-1026 intended anatomy without the proximal shaft comparison testing of excessive force similarly marketed tested per ASTM F206-08 shall be ≤ 1500 gf. competitive devices (See TR1234) 2 The Device shall maintain 2.1 Hub Tensile The hub to shaft bond Specification from ISO TP-1038 structural integrity during shall meet a 10N 10555-1:2013 anticipated clinical use. (2.25lbf) minimum requirement

AngioGuard specific design input requirements:

- Emboli capture in a bench flow loop (eventually with blood)
- Guidewire tracking-style bench tests
- Measurement and imaging equipment for inspections
- Pore size and porosity to determine the emboli size caught
- Radial force of basket structure

Remember:

Ensure requirements are appropriate by addressing user needs and intended use(s) in terms that are measurable.

Address incomplete, ambiguous, or conflicting requirements.

Phase 1 Concept

•

R&D

User needs/VOC Design description

- Initial prototypes
- Initial prints
- Design & development plan
- Product Requirements Document – draft

Phase 2 Development

- PRD- final
- Mature prototypes
- Test Methods
- Design Verification
 Plan
- Final Prints
- Representative processes

Phase 2 at AngioGuard

Common design input requirements for mechanical devices:

Mechanical Performance	Safety	Packaging
Trackability	Tensile strength	Seal strength
Flexibility	Torque strength	"Shake, Rattle, and Roll"
Kink resistance	Fatigue life	Environmental Conditioning
Simulated use	Biocompatibility	Aging
Flow rate	Aging	
Radiopacity	Sterilization	
Torque transmission	Particulate	
Radial force	Freedom from Leakage	

Other sources of Design Inputs: ISO Standards, FDA Guidance Documents, Competitive Review inducing 510(k)/submission documents, MAUDE database, Risk Analysis, business needs

Phase 2 Development

PRD-final

Plan

Test Methods

Final Prints

processes

DFMEA

UFMEA

DHF

Quality Plan

Standards List

Representative

Mature prototypes

Design Verification

•

٠

.

.

Phase 2 at AngioGuard

What is Risk Analysis?

Intent of Risk Analysis per Preamble Comment #83:

- Identify possible hazards, including use error
- Calculate risk, under normal and fault conditions
- Reduce unacceptable risks to acceptable levels
- Ensure changes made do not introduce new hazards

FMEA: Failure Mode and Effect Analysis

A systematic activity that evaluated potential system and product failures by identifying effects and outcomes of these failures and addressing them to eliminate or mitigate them. It also provides a documentation of this analysis.

In essence, DFMEA determines what might go wrong, how bad the effect may be, and how to prevent or mitigate it to improve product quality and reduce the risk of product failure.

Should be performed for design, use, and process in manufacturing. For a design FMEA (DFMEA), consider each component, material, bond, and interface. Also consider the design requirements.

For a use FMEA (UFMEA), consider each step of the procedure where the device is used and what can go wrong.

For a process FMEA (PFMEA), consider each manufacturing process step.

Determine risk acceptability

Actions & Check Step 1: Detect Risk Priority Number a failure mode (RPN) = SEV*OCCUR*DETEC Failure Mode & **Effect Analysis** Step 4: Detection Severity Number number (SEV) (DETEC) Step 3 number

(OCCUR)

Phase 2 Development

Phase 2 at AngioGuard

DFMEA Example

•	PRD- final								Initial Risk				Residual Ri	sk		
•	Mature prototypes	Design Input Requirement	Failure Mode	Cause	Risk Control (Design Output)	Harm/Effect (Applicable HA rows)	Severity (Max from HA Rows)	Occ	Occ Reference	Risk Index	Evidence of Effectiveness	Occ	Occ Reference	Risk Index	ALAP	RBA
•	Test Methods Design Verification Plan Final Prints	1.1.1 Flexibility: The deflection force of the proximal shaft tested ASTM F2606-08 sha ≤ 1500 gf.	per proximal shaft	Braid Wire Diameter Too Large Braid Wire Material Too Stiff Braid Pattern Too Stiff	Braid Wire Diameter Specification (PG- 1234) Braid Wire Material Specification (PG- 1234) Braid Pattern Specification (DW- 5432)	66 72 78	2	1	Occurrence based on Design Characterization testing documented in TR1234 – ppk 2.34 with an avg of 800gf	1	DVT Report #XXXX					
•	Representative processes			Braid Pic Count Too High/Low Liner Material Too Stiff Liner Wall Too Thick	Braid Pic Count Specification (DW- 5432) PTFE Liner Material Specification (PG- 4444) PTFE Liner Wall Thickness											
• • •	DFMEA UFMEA Quality Plan DHF			Proximal Shaft Extrusion Material Too Stiff Proximal Shaft Extrusion Too Thick	Specification (PG- 4444) 72D <u>Eebax</u> Extrusion Material Specification (PG- 5555) 72D <u>Eebax</u> Extrusion ID Specification (PG- 5555) 72D <u>Eebax</u>											
•	Standards List			Reflowed Shaft OD too small (polymer filling braid matrix too much)	Extrusion OD Specification (PG- 5555) Post-Reflow Proximal Shaft OD Specification (DW- 6666)											
		2.1.1 Hub Tensile: Th hub to shaft bond sha meet a 10n (2.25lbs) minimum requiremen	II shaft bond breaks at a	Proximal Shaff/Hub Material Incompatible for Bonding	72D Rebax Extrusion Material Specification (PG- 5555) Hub Material Specification (DW- 6666)	1 2 3	4	4	Occurrence based on Design Characterization testing documented in TR1234 - ppls. .89 with an avg of 2.80lbf	3	DVT Report #XXXX					
				Reflowed Shaft OD Too Large (Insufficient Hub Wall Thickness) Hub Bond Length Insufficient Hub Mold Bond	Post-Reflow Proximal Shaft OD Specification (DW-6666) Hub Bond Length Specification (DW- 6666) Pre-Sterile Hub											
				Insufficient (improper melt flow/bond)	Tensile Specification (DW-6666)											

*FMEA risk indices dictate the level of DV testing.

Phase 3 Design Verification & Validation

- Design Verification Testing and Reports
- Design Validation

Phase 3: Verification and Design Outputs

Per 21 CFR 820.30(f):

Design verification is confirmation by objective evidence that design output meets design input. Establish and maintain procedures for Design Verification:

- Confirm through measurable means (e.g., test reports, etc.).
- Review, approve and document in Design History File (DHF).

Design outputs are the results of a design effort at each phase and at the end of the total design effort. The total finished design output consists of the device, its packaging and labeling, and the device master record.

The device master record includes or refers to:

a) Device specifications (includes drawings, composition, formulation, component specifications)

b) Production process specifications (includes equipment specification, production methods and procedures, environmental specifications)

c) Quality assurance procedures and specifications (includes acceptance criteria and measuring and test equipment)

d) Packaging and labeling specifications (includes shelf-life)

e) Installation, maintenance, and servicing procedures

f) Bill of Materials (BOM): the complete "parts list" of all components that are needed to complete a saleable product

The outputs should include appropriate acceptance criteria to demonstrate the respective design input and associated standards are met and must be comprehensive enough to specify the device design to allow for design verification and design validation.

Phase 3 Design Verification & Validation

- Design Verification Testing and Reports
- Design Validation

Phase 3 at AngioGuard

Build & Test Final Design: verifying the design outputs meet the design inputs.

Project Management: Keeping track of it all

ID	Task Mode	Task Name	Duration Start	Finish	Predeces	EC	No	w 8, '2	0 F W	т с	c	Nov 1	15, '20	/ _ _	. .	c	Nov	Nov 22, '20	Nov 22, '20	Nov 22, '20	Nov 22, '20 Nov	Nov 22, '20 S S M T W T E S S M T	Nov 22, '20 S S M T W T E S S M T W					Nov 22, '20 Nov 29, '20 Dec 6, '20 S M T W T F S M T W T V
1	*	Develop Designs	5 days Sun 11/15/2	2Thu 11/19/	2	<u> </u>	. 3		• • •	<u> </u>	<u> </u>	5 IV	1 1 4		. 3	•	<u> </u>	5 141 1 44	<u> </u>	5 7 1 1 7 1 F 5	5 IVI I VV I F 5 5 I	5 M I W I F 5 5 M I	5 M I W I F 5 5 M I V	5 W I W I F 5 5 W I W I F	<u> </u>	3 M I W I F 3 3 M I W I F 3 3	3 M I W I F 3 3 M I W I F 3 3 M	<u> </u>
2	-	Procure Parts	12 day: Thu 11/19/	Mon 12/7/2	21									–	÷		-											1
3	\$	Wire	5 days												-		-											
4	2	Liners	12 day:												-		-	_		_								
5	*	Distal Rings	4 days															-	_	_		_						
6	\$	Molded Hubs	8 days												-		-	-		_	_							
7	-	Inspection	3 days Tue 12/8/2	(Thu 12/10/	22																							*
8	-	Build & Package	5 days Fri 12/11/2	(Thu 12/17/	17																							
9		Sterilize	10 day:Fri 12/18/2	(Thu 12/31/	28																							
10	\$	Develop Tests	5 days Sun 11/15/2	2Thu 11/19/	2									-	-													
11		Procure Test Equi	010 day:Mon 11/16	/Fri 11/27/2	C										-													
12		Run Tests	5 days Fri 1/1/21	Thu 1/7/21	9,10,11																							
13		Analyze Data	2 days Fri 1/8/21	Mon 1/11/2	212																							
14		Write Report	2 days Tue 1/12/2	1Wed 1/13/2	213																							

Phase 3 Design Verification & Validation

- Design Verification Testing and Reports
- Design Validation

Design Verification

Design Validation

Clinical study

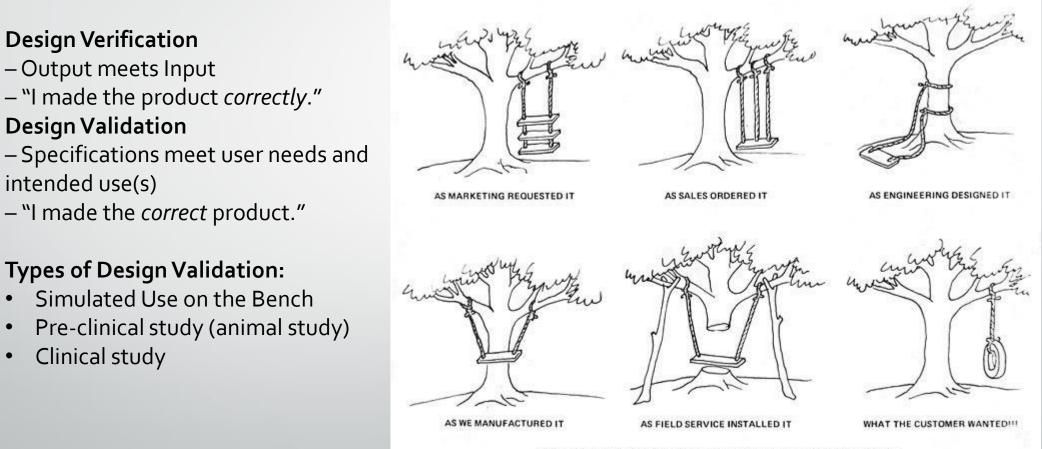
intended use(s)

– Output meets Input

- "I made the product correctly."

- "I made the *correct* product."

Types of Design Validation:


Simulated Use on the Bench

Pre-clinical study (animal study)

Phase 3 at AngioGuard

Verification vs. Validation

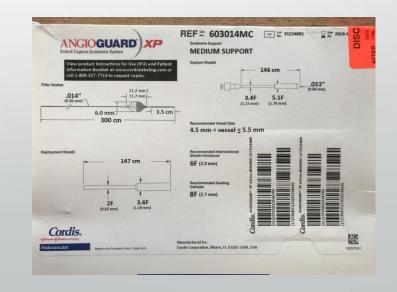
"COMMUNICATION" MEANS: SAYING AND HEARING HAVE THE SAME MESSAGE

Phase 4 Design Transfer to Manf.

Support Transfer

 Update/Maintain Risk Management Report

n/a


- Manufacturing Transfer
- Process Validation

Phase 4 at AngioGuard

Per Design Transfer 21 CFR 820.30(h): Establish and maintain procedures to ensure correct Design Transfer into production specifications.

- Is the Design accurately transferred to Production?
- A final stage of development is frequently done to ensure all outputs are adequately transferred.

Results:

News | July 8, 1999

Cordis Acquires Angioguard

Cordis Corp. (Warren, NJ) has acquired AngioGuard Inc., a Minneapolis-based developer of a containment technology designed to protect the heart and brain from embolic particles potentially dislodged during interventional medical procedures. Terms of the agreement were not disclosed.

"In combination with Cordis' best-in-class carotid stent systems, currently under clinical investigation the US and Europe, AngioGuard's embolic containment technology could enable Cordis to offer customers and patients a total solution for the interventional treatment of carotid artery disease," said Patrick J. O'Neill, Ph.D., Cordis Worldwide Group VP, Research & Development and New Business Development.

During interventional procedures such as carotid stenting and saphenous vein graft stenting, emboli (fragments of plaque or debris) that may be dislodged can pose significant risk of stroke or acute myocardial infarction. AngioGuard has developed proprietary embolic containment technology design to protect the heart and the brain from these particles. AngioGuard's technology incorporates a guider with a filter that is placed distal to (beyond) the target lesion to capture and retrieve emboli throughou these procedures.

O'Neill noted: "European approval to market the AngioGuard technology for coronary applications ha just been received, and we expect approval for carotid applications later this year. We also intend to rapidly initiate US clinical trials."

April 6, 2022

Dunia Bram Principal Specialist, Regulatory Affairs 14201 N.W. 60th Avenue Miami Lakes, Florida 33014

Re: K220654

Trade/Device Name: ANGIOGUARD XP Emboli Capture Guidewire, ANGIOGUARD RX Emboli Capture Guidewire Regulation Number: 21 CFR 870.1250 Regulation Name: Percutaneous Catheter Regulatory Class: Class II Product Code: NTE Dated: March 4, 2022 Received: March 7, 2022

Dear Dunia Bram:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pnn.cfm identifies combination product submissions. The general controls provisions of the Act necessdata. fda.gov/scripts/cdrh/cfdocs/cfpmn/pnn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

