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Chapter 3
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3.1 Introduction

“Soft” fabrication techniques are used for bioMEMS devices that incorporate
synthetic polymers, natural polymers such as DNA (deoxyribonucleic acid)
and proteins, self-assembled monolayers (SAMs), and biological materials.
Many LOC, microfluidic, and microarray devices derive from these fabrication
methods, and are at the heart of mTAS.
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Polymer devices offer certain advantages for LOC and microfluidic device
fabrication. This chapter generally reviews biomaterials: soft lithography
techniques, micromolding and embossing, 3D construction with photopolymeriza-
tion, “smart” polymers and hydrogels (that can be formed in situ and respond by
changing shape to environmental stimuli), SAMs, and thick-film techniques.
Additional fabrication techniques, including microarray fabrication, are intro-
duced in later chapters.

Microfluidic devices may be hybrids of silicon, glass, polymers, and biological
materials, and may require both hard and soft fabrication processes. Many of the
photolithographic steps discussed previously are used for soft fabrication and
include defining regions for etching, plasma treatment, and surface modification.

Glass-based devices may consist of a series of channels or troughs etched into
the substrate with techniques already reviewed. These devices take advantage of
well-known surface and electro-osmotic properties of glass and quartz. As an
alternative, polymers offer the following characteristics:

(1) improved and easier machinability
(2) optical transparency for certain detection strategies
(3) biocompatibility
(4) acceptable thermal and electrical properties
(5) ability to enclose high-aspect-ratio microstructures
(6) ability for surface modification and functionalization

Machinability includes laser ablation, imprinting, embossing, molding, and
reactive-ion etching. This also includes interaction with radiation, such as increasing
resist solubility with exposure to x rays or ultraviolet light. Optical transparency is
necessary for fluorescent, UV-Vis, and Raman detection. The polymer must not
absorb at the detection frequency of interest. The sample, solvents, and other reagents
in a LOC device must not adversely interact with the material through which
they pass. Electrophoretic materials must hold up to electrical fields and be able to
dissipate heat (higher dielectric strengths create greater electric fields). Final
phases of assembly typically require the device to be enclosed; thus, the substrate
and cover plate must be able to withstand bonding temperatures. Finally, walls or sur-
faces may require modification as required by a specific application [Hupert et al.,
2003].

3.2 Biomaterials

Biomaterials for medical diagnostics and therapeutics include natural,
synthetic, and biological materials that have contact with humans or human
products such as blood, urine, cerebral spinal fluid, organs, and other tissue.
These materials include silicon and other ceramics, glass, polymers, and biological
materials such as nucleic acids, proteins, cells, antibodies, antigens, and tissue.

There is considerable experience and published data on a number of bio-
materials used for existing medical devices, and these should be consulted when
developing a bioMEMS device.
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Artificial intraocular lenses, hip prosthesis, vascular grafts, extracorporal
circulatory devices for dialysis and open-heart surgery, and the ball and cage
heart valves were among the ground-breaking attempts to supplant natural
systems with artificial ones, and the first to draw awareness to issues of
biocompatibility.

Some biomaterials, including synthetic nucleic acid and peptide chains, may
be used to modify or pattern the surface of other materials. These in turn may
be used for immobilization of sample constituents such as nucleic acid fragments,
proteins, and cells. Immobilization permits further processing or detection of the
analyte. These concepts are discussed more fully in Chapter 9, Micro-Total-
Analysis Systems, Chapter 11, Genomics and DNA Microarrays and Chapter 12,
Proteomics and Protein Chips. Biocompatibility of biomaterials is also discussed
in Chapter 15, Biocompatibility, FDA and ISO 10993.

3.2.1 Classes of biomaterials

It is useful to divide biomaterials into three classes based on their application and
function:

(1) Materials that are implanted or have other direct contact with humans such
as sensors, actuators, pacemakers, lead wires, prosthetic devices, cultured
tissues, or biomimetic devices (for example, electroactive polymers).

(2) Materials that have a transport and containment function for biological
samples, such as microfluidic channels, mixers, pumps and other LOC
devices used in mTAS.

(3) Materials that have a process function, including surface chemical proper-
ties (either naturally or through surface modification) that are useful for
electrokinetic effects, immobilization, and participation in microreactions.
This also includes tissue scaffolding materials, which allows a supply of
nutrients and removal of waste products from cultured tissue.

3.2.2 Ionic, covalent, and metallic bonds

An understanding of bonding mechanisms between atoms will assist in under-
standing the fabrication and functional characteristics of biomaterials. Alloys are
metals that are combined to form new materials with different properties than
the original components. Compounds are chemically combined elements. Mixtures
are physical blends of two or more materials. Bonding of materials is related to the
outermost (valence) shell of the electrons of a material. Combining atoms requires
complementary valence shells, such as carbon with four spaces available for four
hydrogen bonds. Bonding mechanisms require gaining electrons (ionic bonding),
sharing electrons (covalent bonding), or losing electrons (metallic bonding).

Ionic bonding occurs in the ceramic materials, like silicon and glass, which are
strong and brittle. Here, one atom loses an electron and becomes positively charged,
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while another gains an electron and becomes negatively charge. They are attracted
to one another by opposite charges. Covalent bonding is common in polymers and
other hydrocarbons. They have good plasticity and strength. Here, negatively
charged electrons are shared in the outer rings. Metallic bonding occurs in
metals, where valence electrons are easily detached from the atom and move
about in the material, leaving the atoms as positive ions. These concepts will take
on additional meaning when we review electrokinetic effects and surface
modifications later.

3.3 Soft Lithography

Soft lithography is a group of processes including microcontact printing (mCP),
microtransfer molding (mTM), molding in capillaries (MIMIC), and decal-
transfer microlithography (DTM). These methods use a patterned elastomer as a
stamp, mold, or mask to generate microstructures.

Poly(dimethyl siloxane) (PDMS)

Si O

CH3

CH3

*

* n

A PDMS stamp can be made by casting PDMS over a silicon wafer master
mold. Using hard fabrication techniques, the silicon wafer is first photolithographi-
cally patterned with a resist and is surface treated. The PDMS is applied over the
wafer, cured, and peeled away to be used as a stamp in a number of different ways.
Figure 3.1 shows fabrication of a PDMS stamp.

In microcontact printing (mCP) the PDMS stamp is coated with the material
(“ink”) that one desires to pattern. This is like first stamping an ink pad, which
puts the material on the raised part of the PDMS stamp. Transfer of materials,
including biologically active molecules can be applied to a surface in a well-
defined pattern [Ratner and Bryant, 2004].

Figure 3.2 shows application of mCP using the previously described PDMS
stamp. The stamp is wetted (coated) with a SAM resist by immersion in an appro-
priate solution [such as Y(CH2)nX, where X is a head group and Y is an anchoring
group], and pressed on the substrate surface. Once the stamp is removed the

Figure 3.1 Fabrication of a PDMS stamp. (a) DRIE of silicon master, (b) coating,
and (c) release. [Reprinted with permission from Man (1997), copyright IEEE.]
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substrate may be patterned by wet etching. Because of the thin nature of the
SAM, direct RIE etching is not possible, and wet etching is used to first
pattern a sacrificial layer. RIE may then be performed to etch the underlying
substrate.

In microtransfer molding (mTM) the PDMS mold is filled with a polymer
precursor, such that material is in the relief areas rather than the raised areas as
in mCP. The stamp is then pressed against a substrate and cured. Then the mold
is removed, a pattern of the substrate remains (see Fig. 3.3).

In micromolding in capillaries (MIMIC), the stamp is first applied to the sub-
strate, then a prepolymer liquid is applied at the end of the channels, allowing
electro-osmotic forces to carry it into the channels where it is then cured
(Fig. 3.4) [Beh et al., 1999; Varadan et al., 2001].

Decal-transfer microlithography (DTL) is a technique based on the transfer of
elastomeric detail patterns via the engineered adhesion and release properties of a
compliant PDMS patterning tool [Childs and Nuzzo, 2002].

3.4 Micromolding

3.4.1 Injection molding

In injection molding, thermoplastics pellets are poured into a hopper, melted, trans-
ported by a screw, and then injected into steel or aluminum molds. Plastic enters
the mold under high pressure through a machined sprue, and travels to the cavity
molds along runners. Figure 3.5 shows a schematic view of a microinjection tool
with variotherm heating [Kemmann et al., 1999].

The molds are typically machined and may be rather expensive. Lab-sized
injection molders are available for small molds and limited part runs. Molds can
be fabricated at lower cost by in-house machining of aluminum blocks.

To reduce mold cost, the author combines machining and casting techniques.
PDMS is used as an intermediary mold to cast model impressions with an alumi-
num-filled resin called Alumacast.� The synthetic mold mates with an aluminum

Figure 3.2 Microcontact printing with a PDMS stamp. (a) Immersion, (b)
stamping, and (c) etching. [Reprinted with permission from Nguyen and Wereley
(2002), copyright Artech House.]

�Aluma Cast, Appleton, Wisconsin.
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plate by registration pins, and is clamped into the injection molder. This material
has high tensile strength and is temperate tolerant. Up to one hundred parts can be
made before replacing the mold.

To fabricate microstructures a variotherm (temperature control) process is
required. In this process the mold is first evacuated and heated above the glass
transition temperature of the polymer, and then the molten polymer is injected
under pressure (see Fig. 3.6). The mold is cooled prior to demolding the part
[Heckele and Schomburg, 2004].

Figure 3.3 Microtransfer molding. (a) Microtransfer molding process flow for a
single layer; and (b) multiple layer. [Reprinted with permission from Zhao et al.
(1996), copyright Wiley VCH.]
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Figure 3.4 Micromolding in capillaries (MIMIC). [Reprinted with permission from
Beh et al. (1999), copyright Wiley VCH.]

Figure 3.5 Microinjection tool with variotherm heating [Kemmann et al., 1999].
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Reactive-injection molding is similar to injection molding, except that two
components instead of one are injected into the closed molding tool. This
allows fabrication of parts from polymers that are not thermoplastics, such as
thermosetting materials and elastomers [Heckele and Schomburg, 2004].

3.4.2 Hot embossing

In hot embossing, a thermoplastic material is inserted into a molding machine and
formed under pressure. Figure 3.7 shows the process steps. Hot embossing requires
heat and compression, and is performed in a press with pressures from 5 to 10 tons
required. Structures in the micro and nano ranges may be fabricated, and nickel
and silicon molds may be used. [Heckele and Schomburg 2004].

Advantages of hot embossing include low polymer flow, high-molecular-
weight polymers that provide better mechanical and thermal properties, the
ability for continuous cycle, and it is good for small structures. Disadvantages

Figure 3.6 Microinjection molding: (a) the molding tool is closed, evacuated, and
heated above the glass transition temperature of the polymer; (b) the polymer is
injected into the tool; and (c) tool and polymer are cooled down and the polymer
is demolded. [Reprinted with permission from Heckele and Schomburg (2004),
copyright IOP Publishing Ltd.]
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of hot embossing include more difficulty for structures with high aspect ratios, less
dimension control, limited to planar features (to release from the mold), high
residual stresses on molded parts, and difficulty making large parts or parts with
multiple feature depth [Madou, 2002].

Injection-compression molding is a combination of injection molding and
embossing. Polymer is injected into a semiclosed molding tool, which is then
closed, compressing the material into the mold cavities. This method is used to
produce CDs and DVDs [Heckele and Schomburg, 2004].

In thermoforming, a polymer is placed between two mold inserts, softened by
heating, and then formed by compression (Fig. 3.8).

AMANDA is an acronym for a German expression (in English): “surface
micromachining, micromolding, and diaphragm transfer.” A flexible diaphragm
of a structural material such as polyimide is first deposited and patterned on a
silicon substrate. A housing structure is then molded to complement the diaphragm
structure. The diaphragm is then transferred to the housing by an adhesive, and
additional assemblies are added as necessary. The process steps are shown in

Figure 3.7 Hot embossing. (a) The thermoplastic foil is placed between two
mold inserts; (b) the machine tool is evacuated and heats the polymer above
its softening temperature; and (c) the polymer is cooled and demolded.
[Reprinted with permission from Heckele and Schomburg (2004), copyright IOP
Publishing Ltd.]
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Fig. 3.9. This is a method for low-cost production of microdevices by batch
processing.

3.4.3 Implementation

A simple method of fabricating hot embossing tools using PDMS has been
reported by Narasimhan and Papautsky (2003). The tools are then used to fabricate
microfluidic systems in PMMA of various aspect ratios. A negative photoepoxy

Figure 3.8 Thermoforming. (a) A polymer film is placed into a mold tool
that is then evacuated; (b) the film is clamped; (c) the polymer is then heated
above its softening temperature, and pressurized gas applied from above
presses the film against the mold insert; and (d) the part is demolded.
[Reprinted with permission from Heckele and Schomburg (2004), copyright IOP
Publishing Ltd.]
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Becker and Dietz (1998) describe hot embossing as a replication method for
planar microstructures based on polymer substrates containing microchannels
for capillary electrophoresis (CE). An investigation of a hot embossing process
including the optimization of operating parameters for polystyrene (PS) and
polycarbonate (PC) substrate materials, and the implications for the replication of
microchannels with various aspect ratios have been reported [Simdikova et al.,
2002].
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Use of the AMANDA technique has been shown to produce reliable
micropumps using polyimide (Nylon 6) and other polymers (PSU, PA, PC,
PVDF, and PEEK). Lifetime of the pumps has been demonstrated for up to
7,600 hours [Schomburg et al., 1999]. Development of a micro-annular-gear
pump by micro-powder-injection molding has also been performed [Gietzelt
et al., 2004].

Injection molding and other techniques that heat and compress polymers
raise questions about the processing effects on the rheological, mechanical,
and tribological properties of polymers and composites [Martyn et al.,
2003]. Atmospheric molding is an alternative molding technique that offers
the advantage of not requiring pressure and heat, which might otherwise
influence the accuracy of the device to be fabricated. PMMA-separation
microchips have been fabricated with UV-initiated polymerization of a
monomer solution in an open mold under ambient pressure [Muck Jr. et al.,
2004].

3.5 Three-Dimensional Photopolymerization

Three-dimensional fabrication techniques based on layer-by-layer assembly
(“additive” processes) have application in bioMEMS design. Rapid production
of devices used primarily for modeling and prototyping can be accomplished
with high accuracy by a number of processes.

Stereolithography (SL) and microstereolithography (MSL) use light to initiate
polymerization, and are reviewed in this section.
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3.5.1 Photopolymerization

Photoinitiated polymerization based on UV curing occurs between 225 and
550 nm. Free radical and cationic curing mechanisms may be used.

When the photoinitiator is exposed to UV, they break down leaving
components with an unpaired electron, or free radical. Propagation occurs
with the addition of monomers, and transfer of the free radical down the propagating
chain to continue the process of adding monomers. Termination occurs when the
growing chain stops. Acrylates are associated with free radical polymerization.

In contrast, ionic polymerization involves an attack on the p electron pair of a
monomer. Cationic polymerization occurs when the active site has a positive
charge (in contrast to anionic polymerization in which the active site has a
negative charge). The addition of monomers moves the charge down the chain
until termination occurs. Epoxies are associated with cationic curing [Varadan
et al., 2001].

3.5.2 Stereolithography (SL) and microstereolithography (MSL)

In stereolithography (SL) a computer-driven laser scans a photocurable resin
causing photopolymerization in a layer-by-layer manner, building the structure
in “planes” from the “ground up.” A computer-aided design (CAD) program
takes a 3D rendering from a drawing program, “slices” the image into 2D
images, and operates x-y translational stages (positioners) for moving the laser
in a precise scan pattern. Software turns the laser on and off as it scans, causing
selective polymerization. Parts are fabricated as layers pass through the z-axis
focal plane. The part is lowered (or focal plane elevated) after each layer is
polymerized, bringing the next layer to be polymerized into the focal plane of
the laser. The photopolymer solution may consist of monomers, oligomers, and
photoinitiators. Ceramic and metallic materials may also be incorporated. The
polymerized spot size and thickness may be hundreds of microns.

Microstereolithography (MSL) differs from SL in that submicron resolution of
the x-y-z translational stages and a finely focused UV laser spot allow for poly-
merizations of layers of 1–10 mm in thickness. MSL was proposed by Ikuta in
1995. Projection MSL builds an entire layer at a time, using a focused image
from a mask for each layer rather than x-y scanning. Figure 3.10 shows the
concept of real mask projection MSL. Dynamic mask projection MSL uses a
dynamic mask created and focused from a computer driven liquid crystal
display (LCD), allowing rapid layer-by-layer polymerization (Fig. 3.11). There
are a variety of shapes and functional parts that can be achieved with MSL,
including pipe structures [shown in Fig. 3.12 (a–d)].

An interesting variation in the method has been shown by Im (2002). An SL
system has been developed that imparts multiple colors to a prototype part
(rather than the typical monocolor). Whereas typical evaluation of a layer-by-
layer part is usually confined to the external features, by combining transparent
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and colored areas within a single fabricated part, visualization of “inner structures”
is possible. This may be helpful in modeling a bioMEMS device, including inner
components and packaging from a single SL fabrication, or organ systems such as
the heart or arteries.

It is not hard to imagine future refinement of these processes as being able to
produce commercially suitable medical devices. High resolution imaging data
from a patient could be used to design specific characteristics, dimensions, and
packaging of a device, and layer-by-layer techniques used to fabricate one-of-a-
kind components cost effectively. Moreover, the combined device and host
interface could be modeled with color SL techniques to assist in the design and

Figure 3.10 Real mask MSL. [Reprinted with permission from Suzumori et al.
(1994), copyright IEEE.]

Figure 3.11 Dynamic mask MSL. [Reprinted with permission from Bertsch et al.
(1997), copyright Elsevier.]
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evaluation phase, and to communicate the proposed medical device to the patient
and doctors.

3.6 Smart Polymers and Hydrogels

3.6.1 Introduction

“Smart” polymeric materials exhibit significant changes in their characteristics
with small changes in their environment. These external stimuli include pH,
calcium, magnesium, organic solvents, temperature, magnetic field, electrical
potential, and IR and UV radiation. Roy and Gupta (2003) published an excellent
review of these materials. Some materials respond to dual stimuli such as calcium
and PEG, calcium and temperature, calcium and acetonitrile, pH and temperature,
and light and temperature. Table 3.1 shows a variety of single and dual stimuli and
suitable polymer materials. While electroactive polymers (EAPs) are also con-
sidered smart polymers, they are discussed in Chapter 7, Microactuators and
Drug Delivery.

Smart polymers are either reversible soluble-insoluble (SIS) in aqueous media
or cross-linked in the form of hydrogels. SIS polymers include synthetic polymers
such as poly(N-isopropylacrylamide) (PNIPAAm) and methyl-methacrylate

Figure 3.12 Examples of devices that may be fabricated by high resolution
stereolithography (a) pipe structure; (b) bone material; (c) nozzle; and (d) turbine.
[Reprinted with permission from Bertsch (2005).]
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Table 3.1 Smart Materials and their Stimulus. [Adapted with permission from Roy and
Gupta (2003), copyright Elsevier.]

Stimulus Polymer Material

pH Dendrimers�

Poly(L-lysine) ester

Poly(hydroxy-proline)

Lactose-PEG grafted poly(L-lysine) nanoparticle

Poly(L-lysine)-g-poly (histidine)

Poly(n-propyl acrylate)

Poly(ethacrylic acid) (PEA)

Polysilamine (a heterotelechelic oligomer)

Eudragit S-100��

Eudragit L-100��

Chitosan

PMAA-PEG copolymer

Calcium Alginate

Magnesium Chitosan

Organic solvent Eudragit S-100

Temperature Poly(N-isopropylacrylamide) (PNIPAAm)

Magnetic field PNIPAAm hydrogels with ferromagnetic material

Sol-gel transition Poloxamers (block copolymers of polyethylene glycol (PEG) and

polypropylene glycol (PPG))

Chitosan-glycerol phosphate-water

Electric potential Polythiophen gel

IR radiation Poly(N-vinylcarbazole) composite

UV radiation Polyacrylamide crosslinked with

4-(methyacryloyamino)azobenzene

Polyacrylamide-triphenylmethane leuco derivatives

Ultrasound Dodecyl isocyanate-modified PEG-grafted

poly(hydroxyethyl-methacrylate) Poly(HEME)

Dual-stimuli stimulus

Calcium and PEG Carboxymethyl cellulose

Calcium and temperature Eudragit S-100

Calcium and acetonitrile Eudragit S-100

328C and 368C Hydrogels of oligoNIPAAm and oligo(N-vinylcaprolactum)

pH and temperature Poly(N-acryloyl-N0-propyl piperazine)

Light and temperature Poly(vinyl alcohol)-graft-poly-acrylamide-triphenylmethane

leucocyanide derivative

�Dendrimers are large and complex molecules of consistent size and form. They have a regular and highly

branched 3D architecture consisting of three components: core, branches, and end groups.
��Eudragit L-100 and Eudragit S-100 (Röhm GmbH & Co., Germany) are ionic copolymers based on methacrylic

acid and methyl methacrylate, in ratios of 1:1 and 1:2, respectively.
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polymers, and natural polymers such as alginate and chitosan (polysaccharides)
[Roy and Gupta, 2003].
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Hydrogels are 3D networks of polymers that are capable of retaining solvents.
They range from mechanically soft to hard, with varying degrees of porosity.
The precursor material is a liquid mixture, and photopolymerization may be
used to solidify the hydrogel (below). Photolithographic techniques may be used
to polymerize the gel within a LOC device through optically transparent surfaces
(e.g., anodically bonded glass on silicon).

Physical hydrogels are held together with noncovalent forces and have
hydrophilic and hydrophobic domains; and chemical hydrogels are held together
by crosslinking, and have regions of high and low cross-linking. Areas of low
crosslinking allow higher swelling.

When a stimulus is applied at a critical level, both SIS and hydrogels increase
or decrease their overall hydrophilicity and either swell or shrink, respectively.
Figure 3.13 shows diagrammatically the volume-to-stimulus relationship and
polymer swelling.
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3.6.2 Synthesis

Hydrogels may be selectively polymerized by using UV light (365 nm), a collimat-
ing microscope, and photolithography masks. An energy level of 40 mW/cm2 can
induce polymerization.

An example of a pH sensitive hydrogel mixture is acrylic acid (AA) and
2-hydroxyethyl methacrylate (HEMA) in a 1:4 molar ratio, ethylene glycol
dimethacrylate (EGDMA) at 1 wt %, and a photoinitiator DMPA at 3 wt% and
Irgacure 651. This mixture, after polymerization produces a hydrogel that swells
in a basic solution and contracts in an acidic solution.
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An example of a rigid structural material is isobornyl acrylate (IBA), 2,2-bis (p-
20-hydroxy-30-methacryloxypropoxy) phenylene] propane or tetraethyleneglycol
dimethacrylate (TeEGDMA), and Irgacure 651 photo-initiator. Typical polymeri-
zation times are less than a minute [Oosterbroek and van den Berg, 2003].

Figure 3.13 Behavior of stimuli-responsive hydrogels: (a) graph of the volume of
the hydrogel versus stimulus; (b) contracted and swollen state of the polymer
network. [Reprinted with permission from Oosterbroek and van den Berg (2003),
copyright Elsevier.]
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initiating shrinkage depending on which light is shined on them. This form of
optical to thermal to chemical energy translation could prove useful for
bioMEMS devices that operate as remote drug delivery systems triggered via
fiber optics from a distant or integrated electronic controller.

Alexandre et al. (2004) studied star-shaped macromolecules of PEO cross-
linked to each other via electron beam irradiation (high-energy exposure induces
quasi-spontaneous gelation) This material was grafted onto porous expanded
poly (tetrafluoro ethylene) (EXPTFE) to take advantage of the support structure’s
mechanical properties. The PEO-coated structure was implanted in test animals,
and found not to induce the foreign body reaction typically seen with EXPTFE
alone. Diffusion of glucose through the hybrid structure was studied.

3.7 Nanomedicine

BioMEMS is the platform for most conceived nanomedicine applications. This is
especially true for new sensor and diagnostic technologies, drug-delivery systems,
genetic manipulations, and other therapeutic modalities. Patterning techniques for
DNA and protein microarrays are discussed in later chapters.

Reducing feature sizes below 100 nm has required new nanofabrication
methods including extreme ultraviolet (EUV) and x-ray lithography. Micro-
contact printing, soft molding, and molding in capillaries (MIMIC) may also be
used for nanoscale applications.

Additional techniques that have been investigated include nanoimprint litho-
graphy (NIL), laser-assisted direct imprint (LADI) [Chou et al., 2002], nanotrans-
fer printing (nTP) [Loo et al., 2002; Matsui et al., 2003; Menard et al., 2004; Wang
et al., 2004(b)], molecular transfer lithography (MxL) [Schaper, 2003], atomic
force microscopy (AFM) material placement, and self-assembled monolayers
(SAMs).

3.7.1 Nanoimprint lithography (NIL)

There are basically two types of nanoimprint lithography (NIL): thermal and ultra-
violet. Thermal NIL is similar to other molding techniques in that a low-viscosity
polymer is heated above its glass transition temperature and mechanically pressed
in a stamp containing nano-sized features.

UV-NIL is performed at low pressure and room temperature. A transparent
stamp with nano/micro scale patterns is pressed on to a thin resin layer or resin
droplets, and then UV light is exposed from above the stamp to cure the resin.

3.7.2 Self-assembled monolayers (SAMs)

Molecular self-assembly of materials is an important tool for bioMEMS device
fabrication, and offers a new class of nanoscale materials for nanodevices.
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Self-assembly is the spontaneous organization of molecules through the
formations of numerous noncovalent weak chemical bonds. These include
hydrogen bonds, ionic bonds, and van der Waals’ bonds to assemble the molecules
into some well-defined and stable hierarchical macroscopic structure. The collec-
tive interaction of the structure results in a stable material. Chemical comple-
mentarity and structural compatibility are the key elements for the process
[Zhang, 2002].

Certain materials can be made to undergo self-assembly onto surfaces rather
than among themselves, creating self-assembled monolayers (SAMs). These
molecular architectures are formed spontaneously upon the interaction of a
surface—an active head group with an appropriate substrate (see Fig. 3.14).
These “surface anchors” form a covalent bond. Thiols and disulfides are the com-
monly used reactive molecules on noble metal substrates like gold and silver.
Silanes are generally used on nonmetallic oxide surfaces like SiO2, Ta2O5, and
TiO2. The surface-active head is connected to an alkyl or derivatized alkyl
chain compound that serves for dense packing and “linking” with some degree
of flexibility to a reactive tail group. The tail group or terminal end of the alkyl
group is functionalized to yield a number of active groups like –OH, –NH3,
–COOH, and COOR, imparting varied functionality. These ligands recognize
specific molecules, and impart different wetting and interfacial properties. Thick-
nesses in the vertical dimension are typically in the nanometer range, while the
horizontal surface may be macroscopic in size. Stabilization between molecules
occurs by van der Waals’ forces [Schaeferling et al., 2002].

SAMs may act as biocompatible interfaces for chemical coupling of proteins
to a microarray substrate. Protein microarrays offer the ability to study post-
translational modifications (PTM) of proteins such as from phosphorylation,
glycosylation, and acylation as well as other protein activity. They may be used

Figure 3.14 SAM assembly. The monolayer is formed by the exothermic
interaction of a surface group with the substrate, followed by lateral reordering of
the side chains and the tail group. The angular tilt is a result of reordering to
maximize van der Waals interactions between the various molecules. [Adapted
with permission from Schaeferling et al. (2002), copyright Wiley VCH.]
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to identify proteins in disease state and other gene expression less suitable to
DNA microarrays. Traditionally, epoxy-, aldehyde-, or polylysine-coated glass
slides have been used to immobilize antigens or antibodies. Disadvantages have
been the “smearing” of material across individual probes, electrostatic charges
on glass that may cause denaturing of proteins, and varying fluorescence signal
intensity if the surface chemistry within the spots is not homogeneous. SAMs
have been shown to overcome these limitations and offer other advantages.
Schaeferling et al. (2002) review the various methods of coupling proteins to
the SAM microarray surface and fabrication of 2D and 3D protein microarrays.
For example, a well-packed streptavidin surface may be generated by using a
surface reaction between a hydrophobic interface comprised of carboxyl
groups and their interaction with biotin-terminated linker units attached to
amino groups.

DNA microarrays may be fabricated by SAMs as well as by photochemistry
and lithographic techniques (discussed below). Oligonucleotide SAMs have
been created by exposing gold substrates to a solution containing an inert thiol ter-
minated with DNA. To reduce nonspecific binding the DNA-functionalized thiols
are mixed with triethylene glycol-terminated thiol and adsorbed onto gold to form
a DNA monolayer [Bamdad, 1998].

Another technique for forming thin films is the Langmuir-Blodgett process
(see Fig. 3.15). This process allows controlled deposition of a monolayer of mol-
ecules on a substrate. The material of interest is floated on an aqueous surface.
Then, by dipping the substrate into the aqueous solution through the surface
film, a monolayer of the material is deposited onto the substrate surface. The
dipping process may be repeated to add layers [Madou, 2002].

3.7.3 Other patterning techniques

Atomic force microscopy (AFM) is a technique for measuring topography of sur-
faces, and is discussed further in Chapter 10, Detection and Measurement
Methods. The same instrument is useful for manipulating biomolecules [Takeda
et al., 2003]. The AFM tip is 5 to 50 nm in size and by dipping it in organic and
inorganic material it may be used for nanolithography. Another approach is to
immobilize an enzyme on the AFM tip, and by way of scanning, modify a
surface based on enzymatic activity.

Helt et al. (2004) review techniques available for patterning nanostructures
on polymers, and introduce a bench-top method for synthesis and transfer of
materials to and from polymers (STOMP). This technique may find application
in constructing sensors, electronic devices, optical materials, photolithography
masks, and layered photonic band gap structures. In STOMP, nanostructures are
formed by the compression of a malleable metal film, such as Au, deposited on
a rigid support, such as mica, by a polymer stamp, followed by chemical
etching while the material is under compression by the stamp.

Banerjee et al. (2004) review the use of “dip-pen nanolithography” for micro-
fluidic “ink” delivery for array fabrication.
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3.8 Thick-Film Technologies

Thick-film technologies incorporate paste and colloidal compounds that may be
applied as “inks” by screen-printing (and other techniques) and curing, achieving
layer thicknesses of 10 to 50 mm [Harsányi, 2000]. This is in contrast to thin-film
technology that incorporates high-purity metals, alloys, and compounds that
are deposited by physical and chemical deposition methods (PVD, CVD,
electrochemical, thermal oxidation, etc.) in layers of 10 to 200 nm. Sensors are
commonly fabricated with thick-film techniques and may be useful in LOC
devices [Madou, 2002; Wang et al., 2001].

In sol-gel techniques a solid particle and other chemical precursors may be
suspended in a colloidal solution (“sol”), and brought by dehydration or chemical
reaction to the point at which a gelatinous phase transition occurs (“gel”). In the gel
state the materials may be applied as a thick film to an appropriate surface, and

Figure 3.15 Langmuir-Blodgett process. [Reprinted with permission from Madou
(2002), copyright Taylor and Francis Group.]
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then dried and/or sintered into a film coating, powder, or even dense ceramic
[Madou and Florkey, 2000].

3.9 Review Questions

1. Define “biomaterials” and their application classes.
2. List advantages and disadvantages of polymer materials over glass for

bioMEMS applications.
3. Describe ionic, covalent and metallic bonding, and how they apply to

biomaterials.
4. Describe soft lithography and the various methods available for producing

microstructures.
5. Explain injection molding and the special requirements of this process for

microfabrication.
6. Describe hot embossing, the materials commonly used and its role in

fabricating bioMEMS devices.
7. What is atmospheric molding?
8. Define AMANDA.
9. Describe methods for producing three-dimensional parts using photopoly-

merization, and how this process works.
10. Describe what is meant by “smart” polymers, and list several examples of

polymers and their stimulus.
11. What are reversible SIS polymers, and name both synthetic and naturally

occurring polymer examples?
12. Outline the steps to produce a hydrogel.
13. Describe what is meant by “nanomedicine,” and describe some of the

fabrication methodologies available.
14. Describe self-assembled monolayers and techniques to fabricate them.
15. Describe various thick-film preparation techniques.
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