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Operations on Bits 

1. Recall there are 8 bits in a byte, and that each bit can be “1” or 
“0”.  

2. A computer works with binary equivalents of numbers. An 
unsigned byte “11111111” would be equal to 255 (or 28-1). 

3. The rightmost bit is the lowest order or least significant bit. The 
leftmost is the most significant or high-order bit.  

4. A negative number is handled as “two’s compliment” (take the 
compliment of each bit), reserving the most significant bit to 
indicate the sign. A “1” meaning it is a negative number. 
Allowing for this, a signed integer of one byte can have a range 
of -128 to 127 (-2n-1 to 2n-1-1, where n = 8). 

5. Operators include bitwise AND, inclusive-OR, and exclusive-
OR; ones compliment; left shift and right shift. 
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Visualizing Bits and Byte 

Bit  8 7 6 5 4 3 2 1 
Power 27 26 25 24 23 22 21 20 

Binary          1 1 1 1 1 1 1 1
   
Decimal     128 64 32 16 8 4 2 1 

As shown the binary value is 255. If you reserve the 8th bit for 
the sign, and bits 7 to 1 were all “1”, then the largest decimal 
value would be 127. Why is the largest negative -128?  
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Input & Output to a Terminal 

1. All I/O operations are carried by calling functions 
in the standard C library. 

2. Recall: #include <stdio.h> - this file contains 
function declarations and macro definitions. 

3. Character I/O: 
 getchar and putchar 

4. Formatted I/O: 
 printf and scanf 
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Character I/O 

getchar (a); 
Read a single 
character of data 
and assign it to 
variable “a”. 

 
putchar (b); 

Display the 
character contained 
in the variable “b”. 

 

For example: 
 
#include <stdio.h>   
char a, b; 
… 
int main (void)  
program 
{ … 
getchar (a);   //read “a” from terminal 
putchar (b);  //write “b” to the terminal 
… 
} 
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Printf(…) 

 printf (“%[flags] [width] [.prec] [hlL]”, type); 
 It’s all about formatting the output – defining 

what you are outputting and what it should look 
like on the display. 

 Optional fields are in brackets. 
 Order is important. 
 We will first look at some tables that summarize 

what can be between the % and type (also called 
the conversion factor), and then some examples. 

 \n means move to the beginning of the next line. 
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Some Printf(…) Examples 

Example: 
printf (“Hello world! \n”); 
 
int i = 425; 
printf (“%i %o %x %u\n”, i, i, i, i); 
 
float f = 12.978F; 
printf (“%f %e %g\n”, f, f, f); 
 
 
 

Displayed Result: 
Hello world!   (\n - begin new line) 
 
 
425  651  1a9  425 
 
 
12.978000  1.297800e+01  12.978 

printf (“%[flags] [width] [.prec] [hlL]”, type); 

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana 
(2005). 
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Character Examples 

Example: 
char c = ‘X”; 
printf (“%c\n”, c); 
printf (“%3c%3c\n”, c, c); 
 
char s[ ] = “abcdefg”; 
printf (“%s\n”, s); 
printf (“%.5s\n”, s); 
printf (“%10s\n”, s); 
 

Displayed Result: 
 
X 
    X     X  (field width of 3) 
 
 
abcdefg         (display the string) 
abcde             (display 5 characters) 
      abcdefg   (field width of 10, right  
            justified) 

printf (“%[flags] [width] [.prec] [hlL]”, type); 
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Flags 

printf (“%[flags] [width] [.prec] [hlL]”, type); 
 

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana 
(2005). 

  Flag          Meaning 
     -  Left justify value 
     +  Precede value with + or - 
(space)  Precede positive value with space 
character  )          Zero fill numbers 
    #  Precede octal value with 0, hexadecimal  
   value with 0x; display decimal point for floats; 
   leave trailing zeros for g or G format 
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Width and .Precision Modifiers 

printf (“%[flags] [width] [.prec] [hlL]”, type); 
   Specifier                         Meaning 

   number  Maximum size of field 
     *  Take next argument to printf as size of field 
    .number  Minimum number of digits to display for integers; number 
   of decimal places for e or f formats. maximum number of 
   significant digits to display for g; maximum number of 
   characters for s format. 

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana 
(2005). 

       .*  Take next argument to printf as precision (and interpret as 
   indicated in the proceeding row) 
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Type Modifiers 

printf (“%[flags] [width] [.prec] [hlL]”, type); 
   Type                      Meaning 

   hh  Display integer argument as a character 
   h*  Display short integer 
   l*  Display long integer 
   ll*  Display long long integer 

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana 
(2005). 

   L  Display long double 
   j*  Display intmax_t or unimax_t value 
   t*  Display ptrdiff_t value 
   z*  Display size_t value 
(* Can be placed in front of the n conversion character to indicate the corresponding pointer argument  is of the specified type.) 
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Conversion Characters 

printf (“%[flags] [width] [.prec] [hlL]”, type); 
   Char                      Use to Display 

i or d  Integer 
u  Unsigned integer 
o  Octal number 
x  Hexadecimal integer; using a-f 
X  Hexadecimal integer; using A-F 
f or F  Floating point number, to six decimal places by default 
e or E  Floating point number in exponential format (e places lower and E upper case) 
 

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana 
(2005). 

g  Floating point number in f or e format 
a or A  Floating point number in hexadecimal format 0xd.dddp+/-d 
c  Single character 
s  Null-terminated string 
p  Pointer 
n  Doesn’t print – stores the number of characters written so far by this call 
  inside the int pointed to by the corresponding argument. 
%  Percent 
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Scanf 

1. Method for reading data into your program. 
2. Like printf, it takes optional modifiers between the % and 

the modifier. 
3. Usually, when searching the input stream for a value to 

read, it bypasses whitespace characters – blank space, 
tabs, carriage return, new line and from feed.  

4. A %c will read the next character no matter what it is, or 
if it is a string within brackets. 

5. When reading the value is terminated when the field 
width has been reached or until an invalid character is 
read. 
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Scanf Conversion Modifiers 

Modifier                      Meaning 
    *  Field is to be skipped and not assigned 
  size  Maximum size of the input field 
  hh  Value is to be stored in a signed or unsigned char 
   h   Value is to be stored in  a short int 
   l   Value is to be stored in a long int, double or wchar_t 
j, z, or t  Value is to be stored in a size_t (%j), ptrdiff_t (%z), intmax_t, or 
   unimax_t (%t) 
   ll   Value is to be stored in a long int 
   L   Value is to be stored in a long double 
type  Conversion character 
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Scanf Conversion Characters 
Character                      Action 
      d Value to be read is in decimal notation, argument is a pointer 
  to an int, unless h, l, or ll modifier is used, in which case the 
  argument is a pointer to a short, long, or long long. 
       i Like d, except numbers expressed in octal (leading 0) or 
  hexadecimal  (leading 0x or 0X) also can be read. 
      u Value is an integer, and the argument is a point to an unsigned 
  int. 
      o The value to be read is in octal notation, and the argument is a 
  pointer to an int, unless h, l, or ll modifier used.  
      x The value to be read is expressed in hexadecimal notation 
 a, e, f, g The value to be read is expressed in floating-point notation. 
  The corresponding argument is a pointer to float, unless an l 
  or L modifier is used. 
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More… 

Character                      Action 
 c The value to be read is a single character. The  
  argument is a pointer to a character array. 
      s The value to be read is a sequence of characters. 
   […] A character string is to be read. 
     n Nothing gets read. 
     p The value to be read is a pointer, and the argument is a 
  pointer to a pointer to void. 
    % The next non-whitespace character on input must be a %.  
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Scanf Examples 

Example… 
scanf (“%i%c”, &i, &c); 
 
scanf(“%i  %c”, &i, &c); 
 
scanf (“%i  %5c  %*f  %s”, &il, text, string); 
 
 
The next call to scanf picks up where the 
last one left off… 
 
scanf(“%s  %s  %i”, string 2,  string 3, &i2); 

Text Entered… 
29    w 
 
29    w 
 
144abcde  736.55  (wine & 
cheese) 

Reads… 
29 stored in i, space in c 
 
29 stored in i, w in c 
 

144 stored il, 

abcde to character array text, 

735.55 is matched but not assigned, 

“(wine” to string 
 

& to string2 

cheese) to string3 

Waits for an integer to be typed. 

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana 
(2005). 
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Special Functions for Files 

1) fopen - opens the file and creates a pointer for 
reading, writing or appending to the file; 

2) getc and putc - reading and writing characters to 
the file. 

3) fclose – closes file. 
4) feof  - test for end of file.  
5) fprintf and fscanf – reading or writing data from a 

file. 
6) fgets and fputs – reading and writing lines of data. 
7) stdin, stout and stderr – defined in <stdio.h> 
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Preprocessor Command: #define 

 #define - assigns symbolic names to a constant 
 e.g. #define CARD 6 – defines the name card and 

assigns a value of 6. (Capitalized is optional) 
 Anywhere (except in a character string) that ‘card’ 

is used, it will be substituted by the value 6. 
  May appear anywhere in the program. 

 Examples: #define PI 3.1415926, #define 
TWO_PI  2.0 * 3.1415926, #define AND && , 
#define OR ||, or #define EQUALS ==. 
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 #define is also known as a macro because it can 
take an argument like a function. 

 e.g.  #define SQUARE(x)  x*x 
   y = SQUARE (v);  //v2 is assigned   
  to y 
 The type of the argument is unimportant. 
 Becomes resident in the program (more 

memory but faster execution). 
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#include 

 A method of grouping all of your macros together into a 
separate file, then including them into your program. 
Typically placed at the beginning. Examples: <stdio.h>, 
<float.h>, <limit.h> 

 These files end with .h 

 May be contained in a libraries folder when working with 
Arduino and other microcontrollers. 

 Placing in < > tells the compiler to look for the file in a 
specific location. 

 Once created, they can be used in any program. 
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Working with Large Programs 

 Large programs, i.e. > 100 statements, 
might benefit from entering some of the 
code in separate modules. 
 A module is a function or number of related 

functions that you choose to group. 
 Allows for easier editing and a team approach. 
 These multiple source files are brought 

together at the time of compilation (a command 
line). 
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Summary 

 Input/output to a terminal, and printf/scanf formatting 
 File management 
 Preprocessor commands - #define, #include 
 Working with large files 
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