
Introductory Medical Device Prototyping 
 

Advanced C Programming Topics 
 
Prof. Steven S. Saliterman, http://saliterman.umn.edu/ 
Department of Biomedical Engineering, University of Minnesota 



Prof. Steven S. Saliterman 

Operations on Bits 

1. Recall there are 8 bits in a byte, and that each bit can be “1” or 
“0”.  

2. A computer works with binary equivalents of numbers. An 
unsigned byte “11111111” would be equal to 255 (or 28-1). 

3. The rightmost bit is the lowest order or least significant bit. The 
leftmost is the most significant or high-order bit.  

4. A negative number is handled as “two’s compliment” (take the 
compliment of each bit), reserving the most significant bit to 
indicate the sign. A “1” meaning it is a negative number. 
Allowing for this, a signed integer of one byte can have a range 
of -128 to 127 (-2n-1 to 2n-1-1, where n = 8). 

5. Operators include bitwise AND, inclusive-OR, and exclusive-
OR; ones compliment; left shift and right shift. 
 



Prof. Steven S. Saliterman 

Visualizing Bits and Byte 

Bit  8 7 6 5 4 3 2 1 
Power 27 26 25 24 23 22 21 20 

Binary          1 1 1 1 1 1 1 1
   
Decimal     128 64 32 16 8 4 2 1 

As shown the binary value is 255. If you reserve the 8th bit for 
the sign, and bits 7 to 1 were all “1”, then the largest decimal 
value would be 127. Why is the largest negative -128?  



Prof. Steven S. Saliterman 

Input & Output to a Terminal 

1. All I/O operations are carried by calling functions 
in the standard C library. 

2. Recall: #include <stdio.h> - this file contains 
function declarations and macro definitions. 

3. Character I/O: 
 getchar and putchar 

4. Formatted I/O: 
 printf and scanf 

 



Prof. Steven S. Saliterman 

Character I/O 

getchar (a); 
Read a single 
character of data 
and assign it to 
variable “a”. 

 
putchar (b); 

Display the 
character contained 
in the variable “b”. 

 

For example: 
 
#include <stdio.h>   
char a, b; 
… 
int main (void)  
program 
{ … 
getchar (a);   //read “a” from terminal 
putchar (b);  //write “b” to the terminal 
… 
} 



Prof. Steven S. Saliterman 

Printf(…) 

 printf (“%[flags] [width] [.prec] [hlL]”, type); 
 It’s all about formatting the output – defining 

what you are outputting and what it should look 
like on the display. 

 Optional fields are in brackets. 
 Order is important. 
 We will first look at some tables that summarize 

what can be between the % and type (also called 
the conversion factor), and then some examples. 

 \n means move to the beginning of the next line. 



Prof. Steven S. Saliterman 

Some Printf(…) Examples 

Example: 
printf (“Hello world! \n”); 
 
int i = 425; 
printf (“%i %o %x %u\n”, i, i, i, i); 
 
float f = 12.978F; 
printf (“%f %e %g\n”, f, f, f); 
 
 
 

Displayed Result: 
Hello world!   (\n - begin new line) 
 
 
425  651  1a9  425 
 
 
12.978000  1.297800e+01  12.978 

printf (“%[flags] [width] [.prec] [hlL]”, type); 

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana 
(2005). 



Prof. Steven S. Saliterman 

Character Examples 

Example: 
char c = ‘X”; 
printf (“%c\n”, c); 
printf (“%3c%3c\n”, c, c); 
 
char s[ ] = “abcdefg”; 
printf (“%s\n”, s); 
printf (“%.5s\n”, s); 
printf (“%10s\n”, s); 
 

Displayed Result: 
 
X 
    X     X  (field width of 3) 
 
 
abcdefg         (display the string) 
abcde             (display 5 characters) 
      abcdefg   (field width of 10, right  
            justified) 

printf (“%[flags] [width] [.prec] [hlL]”, type); 



Prof. Steven S. Saliterman 

Flags 

printf (“%[flags] [width] [.prec] [hlL]”, type); 
 

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana 
(2005). 

  Flag          Meaning 
     -  Left justify value 
     +  Precede value with + or - 
(space)  Precede positive value with space 
character  )          Zero fill numbers 
    #  Precede octal value with 0, hexadecimal  
   value with 0x; display decimal point for floats; 
   leave trailing zeros for g or G format 



Prof. Steven S. Saliterman 

Width and .Precision Modifiers 

printf (“%[flags] [width] [.prec] [hlL]”, type); 
   Specifier                         Meaning 

   number  Maximum size of field 
     *  Take next argument to printf as size of field 
    .number  Minimum number of digits to display for integers; number 
   of decimal places for e or f formats. maximum number of 
   significant digits to display for g; maximum number of 
   characters for s format. 

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana 
(2005). 

       .*  Take next argument to printf as precision (and interpret as 
   indicated in the proceeding row) 



Prof. Steven S. Saliterman 

Type Modifiers 

printf (“%[flags] [width] [.prec] [hlL]”, type); 
   Type                      Meaning 

   hh  Display integer argument as a character 
   h*  Display short integer 
   l*  Display long integer 
   ll*  Display long long integer 

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana 
(2005). 

   L  Display long double 
   j*  Display intmax_t or unimax_t value 
   t*  Display ptrdiff_t value 
   z*  Display size_t value 
(* Can be placed in front of the n conversion character to indicate the corresponding pointer argument  is of the specified type.) 



Prof. Steven S. Saliterman 

Conversion Characters 

printf (“%[flags] [width] [.prec] [hlL]”, type); 
   Char                      Use to Display 

i or d  Integer 
u  Unsigned integer 
o  Octal number 
x  Hexadecimal integer; using a-f 
X  Hexadecimal integer; using A-F 
f or F  Floating point number, to six decimal places by default 
e or E  Floating point number in exponential format (e places lower and E upper case) 
 

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana 
(2005). 

g  Floating point number in f or e format 
a or A  Floating point number in hexadecimal format 0xd.dddp+/-d 
c  Single character 
s  Null-terminated string 
p  Pointer 
n  Doesn’t print – stores the number of characters written so far by this call 
  inside the int pointed to by the corresponding argument. 
%  Percent 
 



Prof. Steven S. Saliterman 

Scanf 

1. Method for reading data into your program. 
2. Like printf, it takes optional modifiers between the % and 

the modifier. 
3. Usually, when searching the input stream for a value to 

read, it bypasses whitespace characters – blank space, 
tabs, carriage return, new line and from feed.  

4. A %c will read the next character no matter what it is, or 
if it is a string within brackets. 

5. When reading the value is terminated when the field 
width has been reached or until an invalid character is 
read. 



Prof. Steven S. Saliterman 

Scanf Conversion Modifiers 

Modifier                      Meaning 
    *  Field is to be skipped and not assigned 
  size  Maximum size of the input field 
  hh  Value is to be stored in a signed or unsigned char 
   h   Value is to be stored in  a short int 
   l   Value is to be stored in a long int, double or wchar_t 
j, z, or t  Value is to be stored in a size_t (%j), ptrdiff_t (%z), intmax_t, or 
   unimax_t (%t) 
   ll   Value is to be stored in a long int 
   L   Value is to be stored in a long double 
type  Conversion character 
    



Prof. Steven S. Saliterman 

Scanf Conversion Characters 
Character                      Action 
      d Value to be read is in decimal notation, argument is a pointer 
  to an int, unless h, l, or ll modifier is used, in which case the 
  argument is a pointer to a short, long, or long long. 
       i Like d, except numbers expressed in octal (leading 0) or 
  hexadecimal  (leading 0x or 0X) also can be read. 
      u Value is an integer, and the argument is a point to an unsigned 
  int. 
      o The value to be read is in octal notation, and the argument is a 
  pointer to an int, unless h, l, or ll modifier used.  
      x The value to be read is expressed in hexadecimal notation 
 a, e, f, g The value to be read is expressed in floating-point notation. 
  The corresponding argument is a pointer to float, unless an l 
  or L modifier is used. 
  



Prof. Steven S. Saliterman 

More… 

Character                      Action 
 c The value to be read is a single character. The  
  argument is a pointer to a character array. 
      s The value to be read is a sequence of characters. 
   […] A character string is to be read. 
     n Nothing gets read. 
     p The value to be read is a pointer, and the argument is a 
  pointer to a pointer to void. 
    % The next non-whitespace character on input must be a %.  
  



Prof. Steven S. Saliterman 

Scanf Examples 

Example… 
scanf (“%i%c”, &i, &c); 
 
scanf(“%i  %c”, &i, &c); 
 
scanf (“%i  %5c  %*f  %s”, &il, text, string); 
 
 
The next call to scanf picks up where the 
last one left off… 
 
scanf(“%s  %s  %i”, string 2,  string 3, &i2); 

Text Entered… 
29    w 
 
29    w 
 
144abcde  736.55  (wine & 
cheese) 

Reads… 
29 stored in i, space in c 
 
29 stored in i, w in c 
 

144 stored il, 

abcde to character array text, 

735.55 is matched but not assigned, 

“(wine” to string 
 

& to string2 

cheese) to string3 

Waits for an integer to be typed. 

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana 
(2005). 



Prof. Steven S. Saliterman 

Special Functions for Files 

1) fopen - opens the file and creates a pointer for 
reading, writing or appending to the file; 

2) getc and putc - reading and writing characters to 
the file. 

3) fclose – closes file. 
4) feof  - test for end of file.  
5) fprintf and fscanf – reading or writing data from a 

file. 
6) fgets and fputs – reading and writing lines of data. 
7) stdin, stout and stderr – defined in <stdio.h> 

 



Prof. Steven S. Saliterman 

Preprocessor Command: #define 

 #define - assigns symbolic names to a constant 
 e.g. #define CARD 6 – defines the name card and 

assigns a value of 6. (Capitalized is optional) 
 Anywhere (except in a character string) that ‘card’ 

is used, it will be substituted by the value 6. 
  May appear anywhere in the program. 

 Examples: #define PI 3.1415926, #define 
TWO_PI  2.0 * 3.1415926, #define AND && , 
#define OR ||, or #define EQUALS ==. 
 



Prof. Steven S. Saliterman 

 #define is also known as a macro because it can 
take an argument like a function. 

 e.g.  #define SQUARE(x)  x*x 
   y = SQUARE (v);  //v2 is assigned   
  to y 
 The type of the argument is unimportant. 
 Becomes resident in the program (more 

memory but faster execution). 
 



Prof. Steven S. Saliterman 

#include 

 A method of grouping all of your macros together into a 
separate file, then including them into your program. 
Typically placed at the beginning. Examples: <stdio.h>, 
<float.h>, <limit.h> 

 These files end with .h 

 May be contained in a libraries folder when working with 
Arduino and other microcontrollers. 

 Placing in < > tells the compiler to look for the file in a 
specific location. 

 Once created, they can be used in any program. 



Prof. Steven S. Saliterman 

Working with Large Programs 

 Large programs, i.e. > 100 statements, 
might benefit from entering some of the 
code in separate modules. 
 A module is a function or number of related 

functions that you choose to group. 
 Allows for easier editing and a team approach. 
 These multiple source files are brought 

together at the time of compilation (a command 
line). 

 



Prof. Steven S. Saliterman 

Summary 

 Input/output to a terminal, and printf/scanf formatting 
 File management 
 Preprocessor commands - #define, #include 
 Working with large files 
 


	Slide Number 1
	Operations on Bits
	Visualizing Bits and Byte
	Input & Output to a Terminal
	Character I/O
	Printf(…)
	Some Printf(…) Examples
	Character Examples
	Flags
	Width and .Precision Modifiers
	Type Modifiers
	Conversion Characters
	Scanf
	Scanf Conversion Modifiers
	Scanf Conversion Characters
	More…
	Scanf Examples
	Special Functions for Files
	Preprocessor Command: #define
	Slide Number 20
	#include
	Working with Large Programs
	Summary

