Introductory Medical Device Prototyping

Analog Circuits Part 2 – Semiconductors

Prof. Steven S. Saliterman, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota

Concepts to be Covered

Semiconductors

- Diodes to Rectify Current
- Zener Diodes for Voltage Reference
- Voltage Regulators
- Transistors as Switches
- Common Emitter Bipolar Junction Transistor Amplifier

Diodes

- Diodes are semiconductor devices that rectify current allowing flow in only one direction. The larger the current, the larger the diode.
- They may be used as switching devices, voltage-controlled capacitors (varactors) and voltage references (Zener diodes).
- Typically a 2-terminal device an anode and cathode.
- Ideally resistance is zero in one direction, and infinite in the other.
- Diodes allow current to flow in only one direction and can therefore be used as simple solid state switches in AC circuits, being either open (not conducting) or closed (conducting).
- A bridge rectifier, consisting of 4 diodes can be used to convert AC into DC, and typically followed filtering capacitors and/or Zener diode.

Diode Current to Voltage Relationship

- Forward bias: Voltage across the diode is positive and flows.
- Reverse bias: This is the "off" mode of the diode, where the voltage is less than V_F but greater than -V_{BR}. In this mode current flow is mostly blocked,
- Breakdown: When the voltage applied across the diode is very large and negative, lots of current will be able to flow in the reverse direction, from cathode to anode

Half-Wave Rectifier

Prof. Steven S. Saliterman Scherz, P.& S. Monk. *Practical Electronics for Inventors*, McGraw Hill, New York, NY (2016).

Full-Wave Bridge Rectifier

Prof. Steven S. Saliterman Scherz, P.& S. Monk. *Practical Electronics for Inventors*, McGraw Hill, New York, NY (2016).

Zener Diode

- A Zener diode is designed to operate in the reverse breakdown, or Zener region, beyond the peak inverse voltage rating of normal diodes.
 - This reverse breakdown voltage is called the Zener test voltage (V_{zt}), which can range between 2.4 V and 200 V.
- In the forward region, it starts conducting around 0.7 V, just like an ordinary silicon diode.
 - In the leakage region, between zero and breakdown, it has only a small reverse current.
 - The breakdown has a sharp knee, followed by an almost vertical increase in current.
- Zener diodes are used primarily for voltage regulation or voltage reference because they maintain constant output voltage despite changes in current.

Zener Diode Voltage Regulator...

Prof. Steven S. Saliterman

Scherz, P.& S. Monk. Practical Electronics for Inventors, McGraw Hill, New York, NY (2016).

Zener Voltage Regulator Example...

Prof. Steven S. Saliterman Scherz, P.& S. Monk. *Practical Electronics for Inventors*, McGraw Hill, New York, NY (2016).

Zener Diode Simulation...

Voltage Regulators – 7800/7900 Series

- Fixed voltage integrated voltage regulator.
- Three terminal regulation.
- Output current to 1.5A
- Internal thermal overload protection.
- High-power dissipation capability with heatsink tab.

Transistors

- Semiconductor devices that are used to *switch* or *amplify* a signal.
- They typically consist of three terminals. For an NPN or PNP bipolar junction transistor these are called the collector, base and emitter.
- They may ay be a discrete component, or through nanofabrication may number in the billions for a single CPU – e.g. 7.2 billion in Intel's 22-core chip.

http://www.colorado.edu/physics/phys3330/phys3330_fa10/images/Transistors.JPG

Transistor as a Switch – On/Off

- Calculations for transistor saturation:
 - With sufficient base current, I_B through R_B, the transistor "switches on" or goes into *saturation*, and *sinks* the load current I_C (turning *off* the Vout),
 - When the transistor is off, output current is available through R_C.
 - Calculate the base and collector resistors to allow saturation, and a useful output voltage for this example with the following specifications:
 - 1. V_{IN} = 12 V, V_{OUT} <0.4 V at I_{SINK} <10 mA (transistor *on*).
 - 2. V_{IN} <0.05 V, V_{OUT} >10 V at I_{OUT} = 1 mA (transistor *off*).
 - 3. The transistor current gain, β (beta) is 50, and equals I_C/I_B .

Calculating the Resistors and Current...

 When the transistor is off, 1 mA can be drawn out of the collector resistor without pulling the collector or output voltage to less than ten volts (circuit specification) (V_{CE} is voltage from collector to emitter):

•
$$R_C \le \frac{V_{+12} - V_{Out}}{I_{Out}} = \frac{12 - 10}{.001} = 2k$$

• When the transistor is *on*, the base resistor must be sized to enable the input signal to drive enough base current into the transistor to saturate it:

•
$$I_C = \beta I_B = \frac{V_{\pm 12} - V_{CE}}{R_C} + I_L \approx \frac{V_{\pm 12}}{R_C} + I_L$$
 (saturation plus sink current)
• $R_B \leq \frac{V_{In} - V_{BE}}{I_B}$ (V_{BE} is voltage from base to emitter)
• $\therefore R_B \leq \frac{(V_{In} - V_{BE})\beta}{I_C} = \frac{(12 - 0.6)50 V}{\left[\frac{12}{2} + 10\right] mA} = 35.6k$

• When the transistor goes *on*, it sinks the load current.

Transistor Switch Simulation...

Saturation Voltage...

Linear Region...

Transistor as an Amplifier

- A transistor can be "off", "on" or in a "linear state" where I_B causes changes in I_C based on h_{FE}, the current gain factor:
 - $I_C = I_B x h_{FE}$
 - Useful for example, for a common emitter amplifier.
- In saturation, any changes in I_B will not cause changes in I_C .
- When "off", there is no base current applied.

Transistor Operating State...

http://www.ermicro.com/blog

The Transistor Operating State

Image courtesy of www.ermicro.com/blog

Typical NPN Characteristic Curve...

Curves relate the output collector current, (I_C) to the collector voltage, (V_{CE}) for different values of base current, (I_B) .

Quiescent point - V_{CE} is set to allow the output voltage to swing positive and negative when amplifying an AC signal.

Typical Transistor (NPN) Characteristic Curves for CE (Common Emitter) Amplifier

Characteristic Curve Explained...

- These curves relate the output collector current, (I_C) to the collector voltage, (V_{CE}) for different values of base current, (I_B).
- A DC biasing voltage is applied to the base to allow it to operate in its linear region. The transistor is then operating half-way between its cutoff and saturation voltages.
- The DC load line shows all of the possible operating points when different base current values are applied.
- V_{CE} is set to allow the output voltage to swing positive and negative when amplifying an AC signal. This is referred to as setting the operating point or Quiescent point (Q-point).

Bipolar Junction Transistor Amplifier Example...

- Specifications:
 - 1. $I_Q = 1 \text{ mA} (I_C)$
 - 2. h_{FE} = 100 (Gain)
 - $_{3.}$ V_{CC} = 20 V (Source)
 - 4. $f_{3dB} = 100 \text{ Hz}$
 - 5. V_{BE} is 0.6 V
 - 6. Set V_{OUT} (or V_C) to 10 V
 - 7. Set V_E to 1 V

Common Emitter Amplifier

Scherz, P.& S. Monk. *Practical Electronics for Inventors*, McGraw Hill, New York, NY (2016).

Calculation of Resistors...

1.
$$R_{c} = \frac{V_{c} - V_{cc}}{I_{c}} = \frac{0.5V_{cc} - V_{cc}}{I_{Q}} = \frac{10 V}{1 mA} = 10k \Omega$$

2. $R_{E} = \frac{V_{E}}{I_{E}} = \frac{1 V}{1 mA} = 1k \Omega$
3. $V_{B} = V_{E} + 0.6 V = 1.6 V$
4. $\frac{R_{2}}{R_{1}} = \frac{V_{B}}{V_{cc} - V_{B}} = \frac{1.6 V}{20 V - 1.6 V} = \frac{1}{11.5}, R_{1} = 11.5R_{2}$
5. $\frac{R_{1}R_{2}}{R_{1} + R_{2}} \leq \frac{1}{10} R_{in}(base), dc, R_{in}(base), dc = h_{FE}R_{E}$
• $R_{2} = 10k \Omega$
• $R_{1} = 115k \Omega$ (Substitute 110k Ω which exists.)
6. R_{3}, C_{1} and C_{2} are based on gain and frequency.

Prof. Steven S. Saliterman Scherz, P.& S. Monk. *Practical Electronics for Inventors*, McGraw Hill, New York, NY (2016).

Simulation of the Amplifier...

Amplifier on a Breadboard Example...

Function Generator set at 1 kHz, 0.1 V pp (Actually measures 79.2 MV pp on oscilloscope)

Power Supply set at 20 VDC

Voltage Gain...

Amplifier Input 79.2 mV pp

Amplifier Output 7.6 V pp Gain is 7.6/.079 = 96.2

Amplifier with the Trainer Board & Hantek 2D72...

- In this example, the input voltage measures 208 mVpp (.112 + .096), and the output voltage measures 10.4 Vpp (5.2 + 5.2).
- The gain is 10.4/.208 = 50

Summary

Semiconductors

- Diodes to Rectify Current
- Zener Diodes for Voltage Reference
- Voltage Regulators
- Transistors as Switches
- Common Emitter Transistor Amplifier