Introductory Medical Device Prototyping

Analog Circuits Part 3-Operational Amplifiers

Concepts to be Reviewed

- Operational amplifiers.
- Basics
- Amplification
- The 741 Op Amp
- LM555 timer
- Monostable or "one shot"
- Astable multivibrator (oscillator)
- Appendix - Applications
- Transducers

Operational Amplifier

Op Amp Closed Loop Configurations

- A feedback loop allows for precise control of the voltage gain:
- Inverting Op Amp
- $V_{\text {OUT }}=-V_{I N} \frac{R_{F}}{R_{G}}$
- \quad Voltage Gain $=\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{F}}{R_{G}}$
- Non-Inverting Op Amp
- $V_{O U T}=V_{I N} \frac{R_{G}+R_{F}}{R_{G}}$
- \quad Voltage Gain $=\frac{V_{\text {out }}}{V_{\text {in }}}=1+\frac{R_{F}}{R_{G}}$
a.

b.

Inverting Amplifier, Gain of 6.83

Changing R2 Changes Gain to 3.417 ...

Non-Inverting Amplifier, Gain of 11

$$
\begin{aligned}
& V_{\text {out }}=V_{\text {in }}\left(\frac{\left(R_{1}+R_{2}\right)}{R_{1}}\right)=2 \times\left(\frac{10+1}{1}\right)=22 V_{\text {pp }} \text { or } 11 V_{p} \\
& \text { Voltage Gain }=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{22}{2}=11 \text { or } 1+\frac{R_{2}}{R_{1}}=11
\end{aligned}
$$

Op-Amp Parameters to Know!

1. $\quad Z_{\mathrm{IN}}$ (input impedance)

- This is the resistive impedance looking directly into the input terminals of the op-amp when used open-loop.
- Typical values are $1 \mathrm{M} \Omega$ for op-amps with bipolar input stages, and a million megohms for FET-input op-amps.

2. Z_{o} (output impedance)

- This is the resistive impedance of the basic op-amp when used open-loop.
- Values of a few hundred ohms are typical of most op-amps.

3. $\quad I_{b}$ (input bias current)

- The input terminals of all op-amps sink or source finite currents when biased for linear operation.
- The magnitude of this current is denoted by I_{b}, and is typically a fraction of a $\mu \mathrm{A}$ in bipolar op-amps, and a few pA in FET types.

Parameters Continued...

4. \mathbf{A}_{o} (open-loop voltage gain)

- Voltage gain occurring between the input and output terminals.
- Typical figures are $\times 100,000$, or 100 dB , where $d B=20 \times \log _{10}\left(\frac{V_{\text {out }}}{V_{\text {in }}}\right)$

5. V_{S} (supply voltage range)

- Power supplies are typically dual supplies with positive and negative voltages and a common, but may also be single-ended. Typically $\pm 3 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.

6. $\quad \mathbf{V}_{\mathrm{i}(\max)}$ (input voltage range)

- $\mathrm{V}_{\mathrm{i}(\max)}$ is one or two volts less than V_{S} - keep your inputs at or below.

7. $\quad \mathbf{V}_{\mathrm{io}}$ (differential input offset voltage)

- When both inputs are grounded the output should be zero. In practice you need to null a slight differential input that appears as a significant gain through the op-amp.

Ideal vs Real Op Amp...

Real op amp

- Rule 1

- For an ideal op amp, the open-loop voltage gain is infinite $\left(A_{o}=\infty\right)$.
- For a real op amp, the gain is a finite value, typically between 10^{4} to 10^{6}.
- Rule 2
- For an ideal op amp, the input impedance is infinite $\left(R_{\text {in }}=\infty\right)$.
- For a real op amp, the input impedance is finite, typically 10^{6} (typical bipolar op amp) to 10^{12} Ω (typical JFET op amp).
- The output impedance for an ideal op amp is zero $\left(R_{\text {out }}=0\right)$.
- For a real op amp, Rout is typically 75 to 300Ω.
- Rule 3
- The input terminals of an ideal op amp draw no current.
- Typically within a pA (typical JFET op amp) to nA range (typical bipolar op amp).

Parameters Continued...

8. CMRR (common mode rejection ratio)

- An op-amp produces an output proportional to the difference between the signals on its two input terminals.
- Ideally, it should give zero output if identical signals are applied to both inputs simultaneously, i.e., in common mode. In practice, such signals do not entirely cancel out within the op-amp, and produce a small output signal.
- The ability of an op-amp to reject common mode signals is usually expressed in terms of CMRR, i.e., the ratio of the opamp's gain with differential signals versus the gain with common mode signals.
- CMRR values of 90 dB are typical of most op-amps.

CMRR \& CMR...

- Mathematically, common-mode rejection can be represented as:
- $C M R R=A_{D} \frac{V_{C M}}{V_{\text {OUT }}}$
where:
- A_{D} is the differential gain of the amplifier.
- V_{CM} is the common-mode voltage present at the amplifier inputs.
- $\mathrm{V}_{\text {out }}$ is the output voltage present when a common-mode input signal is applied to the amplifier.
- The term CMR is a logarithmic expression of the commonmode rejection ratio (CMRR).
- $C M R=20 \log _{10} C M R R$

Common Mode Rejection Issue...

- An op amp operated in the typical inverting or noninverting amplifier configuration will process common-mode signals, passing them through to the output, but will not normally reject them.

Parameters Continued...

9. f_{T} (transition frequency)

- An op-amp typically gives a low-frequency voltage gain of about 100dB.
- The f_{T} is the frequency at which there is unity gain (0dB).
- Open-loop frequency response is internally tailored so that the gain falls off at a rate of 6dB/octave (= 20dB/decade), eventually falling to unity.
- For example, the 741 op-amp, has an f_{T} value of 1 MHz and a low-frequency gain of 106 dB .

The 741 Op-Amp $f_{T}=1 \mathrm{MHz} .$.

- When the op-amp is used in a closed loop amplifier circuit, the circuit's bandwidth depends on the closed-loop gain.
- The circuit has a bandwidth of only 1 kHz at a gain of 60 dB , or 100 kHz at a gain of 20 dB .
- The f_{T} figure can thus be used to represent a gainbandwidth product.

Parameters Continued...

10. Slew rate

- The maximum rate of change of voltage at the opamp's output.
- Slew rate is normally specified in terms of volts per microsecond.
- The LM741 op amp slew rate is $.5 \mathrm{~V} / \mu \mathrm{S}$ at unity gain.
- One effect of slew rate limiting is to make a greater bandwidth available to small-amplitude output signals than to large-amplitude output signals.

Slew Rate Simulation...

Slew rate as determined by output of a square way input.

LM741 Data Sheet...

Electrical Characteristics

$\left(V C C=15 \mathrm{~V}, \mathrm{VEE}=-15 \mathrm{~V} . \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Parameter	Symbol	Conditions		LM741C/LM741I			Unit
				Min.	Typ.	Max.	
Input Offset Voltage	VIo	$\mathrm{RS} \leq 10 \mathrm{~K} \Omega$		-	2.0	6.0	mV
		$\mathrm{RS} \leq 50 \Omega$		-	-	-	
Input Offset Voltage Adjustment Range	VIO(R)	$\mathrm{VCC}= \pm 20 \mathrm{~V}$		-	± 15	-	mV
Input Offset Current	110	-		-	20	200	nA
Input Bias Current	IBIAS	-		-	80	500	nA
Input Resistance (Note1)	RI	$\mathrm{VCC}= \pm 20 \mathrm{~V}$		0.3	2.0	-	$\mathrm{M} \Omega$
Input Voltage Range	$\mathrm{VI}(\mathrm{R})$	-		± 12	± 13	-	V
Large Signal Voltage Gain	GV	$\mathrm{RL} \geq 2 \mathrm{~K} \Omega$	$\begin{aligned} & \mathrm{VCC}= \pm 20 \mathrm{~V}, \\ & \mathrm{VO}(\mathrm{P}-\mathrm{P})= \pm 15 \mathrm{~V} \end{aligned}$	-	-	-	V / mV
			$\begin{aligned} & V C C= \pm 15 \mathrm{~V}, \\ & \mathrm{~V}(\mathrm{P}-\mathrm{P})= \pm 10 \mathrm{~V} \end{aligned}$	20	200	-	
Output Short Circuit Current	IsC		-	-	25	-	mA
Output Voltage Swing	Vo(P-P)	$\mathrm{VCC}= \pm 20 \mathrm{~V}$	$\mathrm{RL} \geq 10 \mathrm{~K} \Omega$	-	-	-	V
			RL $\geq 2 \mathrm{~K} \Omega$	-	-	-	
		$\mathrm{VCC}= \pm 15 \mathrm{~V}$	$\mathrm{R} \mathrm{L} \geq 10 \mathrm{~K} \Omega$	± 12	± 14	-	
			$\mathrm{RL} \geq 2 \mathrm{~K} \Omega$	± 10	± 13	-	

LM741...

Common Mode Rejection Ratio		CMRR	$\mathrm{RS} \leq 10 \mathrm{~K} \Omega, \mathrm{VCM}= \pm 12 \mathrm{~V}$	70	90	-	dB	
		$\mathrm{RS} \leq 50 \Omega, \mathrm{VCM}= \pm 12 \mathrm{~V}$	-	-	-			
Power Supply Rejection Ratio			PSRR	$\begin{aligned} & \mathrm{VCC}= \pm 15 \mathrm{~V} \text { to } \mathrm{VCC}= \pm 15 \mathrm{~V} \\ & \mathrm{RS} \leq 50 \Omega \end{aligned}$	-	-	-	dB
		$\begin{aligned} & \mathrm{VCC}= \pm 15 \mathrm{~V} \text { to } \mathrm{VCC}= \pm 15 \mathrm{~V} \\ & \mathrm{RS} \leq 10 \mathrm{~K} \Omega \end{aligned}$		77	96	-		
Transient Response	Rise Time	TR	Unity Gain	-	0.3	-	$\mu \mathrm{s}$	
	Overshoot	OS		-	10	-	\%	
Bandwidth		BW	-	-	-	-	MHz	
Slew Rate		SR	Unity Gain	-	0.5	-	V/us	
Supply Current		ICC	$\mathrm{RL}=\infty \Omega$	-	1.5	2.8	mA	
Power Consumption		PC	$\mathrm{VCC}= \pm 20 \mathrm{~V}$	-	-	-	mW	
		$\mathrm{VcC}= \pm 15 \mathrm{~V}$	-	50	85			

Voltage Follower．．．

Function generator－XFG1		$\Sigma 3$
Waveforms		
－－ハール		
Signal options		
Frequency：	1	kHz
Duty cycle：	50	\％
Amplitude：	1	Vp
Offset：	0	V
Set rise／Fall time		
（－）	Common	－

The gain is one．The input is very high and the output is very low impedance．This is useful for isolation．

Summing Amplifier...

Difference Amplifier with Gain of 10...

Differentiator...

Integrator...

LM555 Timer

- Features \& Applications:
- Precision Timing - $\mu \mathrm{S}$ to hours.
- Pulse Generation - astable and monostable operation.
- Output can sink 200 mA - TTL compatible.
- Sequential Timing
- Time Delay Generation
- Pulse Width Modulation
- Pulse Position Modulation
- Linear Ramp Generator

Pinouts for the LM555 Timer...

1. Pin 1 (ground). IC ground.
2. Pin 2 (trigger). Input to comparator 2, which is used to set the flip-flop. When the voltage at pin 2 crosses from above to below $1 / 3 V C C$, the comparator switches to high, setting the flip-flop.
3. Pin 3 (output). The output of the 555 is driven by an inverting buffer capable of sinking or sourcing around 200 mA . The output voltage levels depend on the output current but are approximately $\operatorname{Vout}($ high $)=V C C-1.5 \mathrm{~V}$ and $\operatorname{Vout}($ low $)=0.1 \mathrm{~V}$.
4. Pin 4 (reset). Active-low reset, which forces Q high and pin 3 (output) low.
5. Pin 5 (control). Used to override the $2 \beta V C C$ level, if needed, but is usually grounded via a $0.01-\mu$ bypass capacitor (the capacitor helps eliminate VCC supply noise). An external voltage applied here will set a new trigger voltage level.

Pinouts...

6. Pin 6 (threshold). Input to the upper comparator, which is used to reset the flip-flop. When the voltage at pin 6 crosses from below to above 2β VCC , the comparator switches to a high, resetting the flip-flop.
7. Pin 7 (discharge). Connected to the open collector of the npn transistor. It is used to short pin 7 to ground when Q is high (pin 3 low). This causes the capacitor to discharge.
8. Pin 8 (Supply voltage VCC). Typically between 4.5 and 16 V for general-purpose TTL 555 timers. (For CMOS versions, the supply voltage may be as low as 1 V .)

Monostable Mode or "One Shot" Diagram...

Monostable Mode or "One Shot" Simulation...

[^0]
Astable Multivibrator or Oscillator...

"Astable Multivibrator"...

Summary

- Operational amplifiers.
- Basics
- Amplification
- The 741 Op Amp
- LM555 timer
- Monostable or "one shot"
- Astable multivibrator (oscillator)
- Appendix - Applications
- Transducers

Transducers

- A transducer converts data into an electrical signal.
- All transducers have offset voltages or currents, and they can be referenced to ground, either power supply rail, or some other voltage.
- The output of the transducer is an electrical signal representing the measured variable.
- The signal must be amplified and filtered so as to increase the signal to noise ratio.
- The analog to digital converter must have enough bits to obtain the resolution required by the accuracy specification.

ECG Medical Monitor for example...

- Signal is 5 mV in a 60 Hz noisy environment, with a large DC component to offset.
- The buffer op amps are low noise, low input current FET op amps.
- The three resistors form a summing network to drive the force amplifier.
- Current is sent through the patient until the net sum output from the three buffer amplifiers is zero.
- The filters after the amplifiers remove the DC component.

- Note also some form of isolation to protect the patient.

Resistive Transducers...

Voltage Divider for a Resistive Transducer

Precision Current Source

Current Source Excitation for a Resistive Transducer

Optical Transducers...

Photodiode Amplifier

Phototransistor Amplifier

Photovoltaic Cell Amplifier

[^0]: Prof. Steven S. Saliterman

