
Introductory Medical Device Prototyping

Biomaterials Part 2 – Polymers

Prof. Steven S. Saliterman, http://saliterman.umn.edu/
Department of Biomedical Engineering, University of Minnesota

Definition of a Biomaterial

- "A biomaterial is a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure."*
- Materials are part of a medical device and subject to the ISO 10993 requirements for medical devices, including biocompatibility.
- The FDA regulates medical devices in the United States, and divides devices into Classes.

FDA Medical Device Classes

Class I devices	Tongue depressors	
	Bandages	
	Gloves	
	Bedpans	
	Simple surgical devices	
Class II devices	Wheelchairs	
	X-ray machines	
	MRI machines	
	Surgical needles	
	Catheters	
	Diagnostic equipment	
Class III devices	Heart valves	
	Stents	
	Implanted pacemakers	
	Silicone implants	
	Hip and bone implants	

McKeen, L.W. in *Handbook of Polymer Applications in Medicine and Medical Devices*, 1st ed., Elsevier, William Andrew (2014).

Some Common Concerns...

- Physical, mechanical, thermal and electrical properties.
- Machinability and moldability.
- Joining and welding.
- Porosity and pore morphology.
- Permeability.
- Degradation and degradation products.
- Biocompatibility (in vivo and in vitro).
- Sterilization

Medical Device Polymers

Polyolefins

- Polyethylene (PE)
- Polypropylene (PP)
- Cyclic Olefin Copolymers (COCs)
- Polyvinyl Chloride (PVC)

Polystyrene/styrenics

- Polystyrene
- Poly(acrylonitrile-co-butadiene-co-styrene) (ABS)
- Polyacrylate (Acrylic, PMMA)
- Polycarbonate (PC)
- Polyurethanes
- Polyformaldehyde (POM) (Delrin or Acetal)

Polyamides

- Polyamide (Nylon 6)
- Poly(hexamethylene adipamide) (Nylon 66)
- Polyether Block Amide (PEBA)

Polyesters

Poly(butylene terephthalate) (PBT)

Poly(ethylene terephthalate) (PET, PETG)

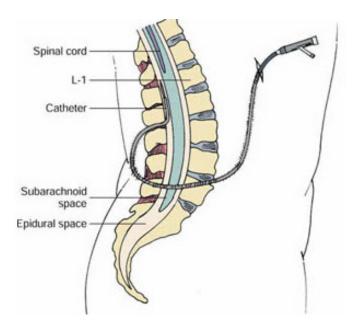
High-Temp Thermoplastics

- Polysulfone (PSF)
- Polyimide (PI) (Kapton)
- Poly(ether ether-ketone) (PEEK)

Fluoropolymers

 Poly(tetrafluoroethylene) (PTFE) (Teflon), PVDF, FEP, ePTFE

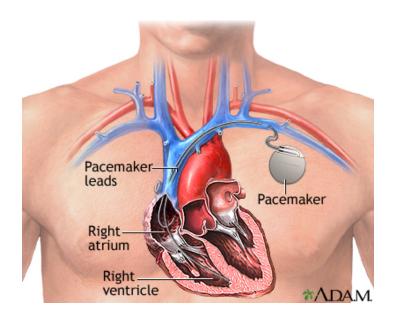
Elastomers


- Silicones
- Thermoplastic elastomers (TPE): TPA (polyamide TPE), TPC (copolyester TPA), TPO (olefinic TPE), TPS (styrenic TPE), TPU (urethane TPE), and TPV (vulcanized TPE).
- Poly-p-xylylene (Parylene)
- Biopolymers
 - Polylactic Acid (PLA)
 - Polyglycolic Acid (PGA)
- Others PANI, PPy, PVAC, PEG

FDA Medical Device Categories

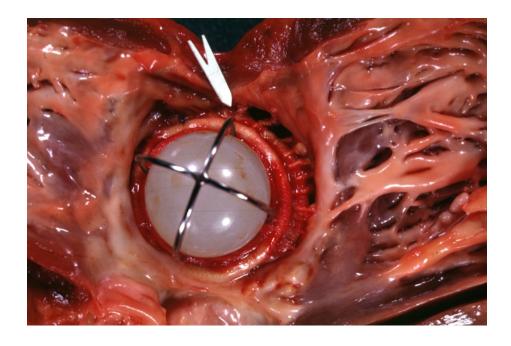
FDA Category	Common Devices	Synthetic Polymer Material Used
Anesthesiology	Epidural catheters	PolyethylenePolytetrafluoroethylenePolyamide
Cardiovascular	 Pacemaker Implantable cardioverter/defibrillator Left Ventricular Assist Device Mechanical heart valves Artificial blood vessels Catheters 	 Polypropylene Polyethylene Polytetrafluoroethylene Polyamide Polyethyleneterephthalate Polydimethylsiloxane Polyhydroxyalkanoates
Dental	DenturesDental Implants	Polymethylmethacrylate
Ear, nose, and throat	 Cochlear implants Stapes implants Nasal implants for nose reconstruction 	 Polydimethylsiloxane Liquid crystal polymer Silicone Parylene Polyethylene

Anesthesiology...

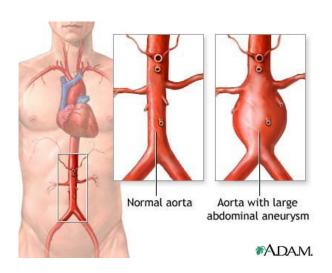

Epidural catheters

(Left) Image Courtesy of Rush University Pain Centers. (Right) Image courtesy of Texas Scientific Instruments.

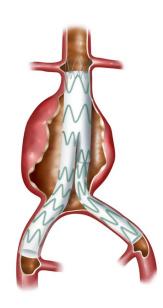
Pacemaker



(Left) Image Courtesy of NIH Medline Plus. (Right) Image courtesy of Medtronic.

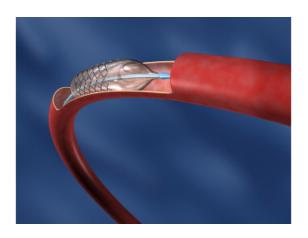

Mitral valve annuloplasty vs. prosthesis for stenosis.



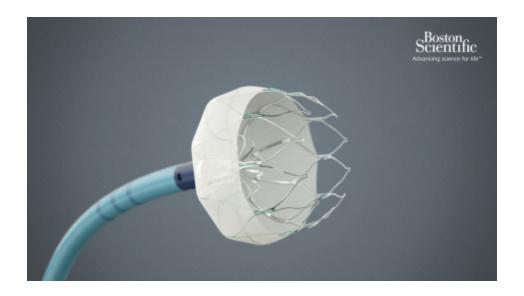


(Left) Image Courtesy of Adam Pick, Heart Valve Surgery.com. (Right) Image courtesy of Prof. Peter Anderson.

Abdominal aortic aneurysm graft.



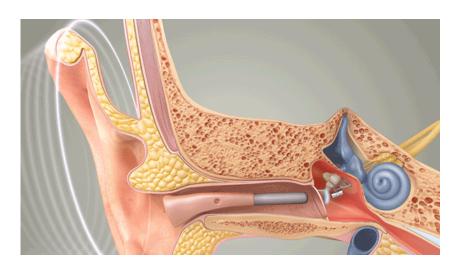
Catheters

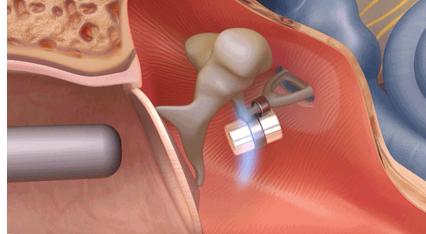

 Applications for Arkema Pebax® MED include catheters (angioplasty, stent-delivery, diagnostic, ablation...), balloons, tubes (peristaltic pumps, connecting tubes, colonoscopes, hearing aids...) and small-dimension molded parts.

- Polyether Block Amide (PEBA)...
 - Copolymer of polyamide and polyethylene

$$HO = \begin{bmatrix} O & O \\ || & C \\ C - PA - C - O - PE - O \end{bmatrix} H$$

$$Nylon 12 \qquad Variable$$

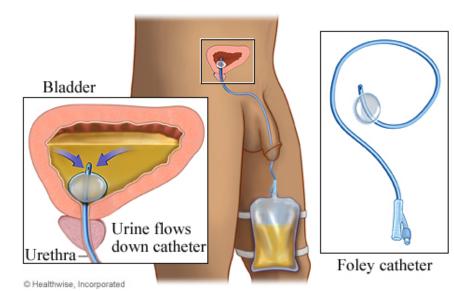

The WATCHMAN® LAAC Device is a catheterdelivered heart implant designed to close the left atrial appendage (LAA). PET knit fabric mesh.



Access sheath is made from Polytetrafluoroethylene (PTFE) (Teflon)

Ear, Nose and Throat...

Ototronix Maxum implant in situ on ossicular chain.



Gastroenterology and urology	 Penile implants Neurostimulator in sacral nerve stimulation Foley catheter Artificial urinary sphincter implant Hernia or vaginal mesh 	 Polydimethylsiloxane Polyethylene Polytetrafluoroethylene Polyamide Polyhydroxyalkanoates Silicone Polypropylene
General and plastic surgery	 Synthetic blood vessels Breast implants Cheek, jaw and chin implants Lip implant Titanium surgical implants Hip implant 	 Polypropylene Polyethyleneterephthalate Polytetrafluoroethylene Silicone Polydimethylsiloxane
Hematology and pathology	 Central venous access device Peripherally Inserted Central Catheter 	PolyethylenePolytetrafluoroethylenePolyamide

Urology...

Indwelling Foley catheter.

General and Plastic Surgery...

Scalpel

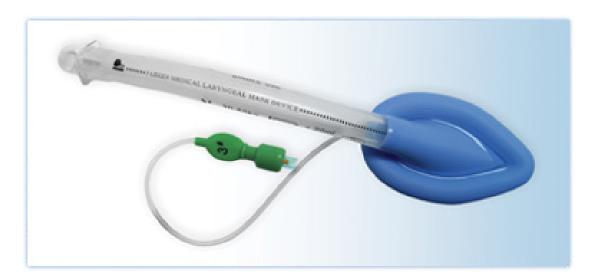
 LNP Lubricomp[®] is a 30% carbon fiber reinforced polycarbonate resin from SABIC for replacing metal in scalpels and other components.

Prof. Steven S. Saliterman Image cou

- Poly(bisphenol A carbonate) (Polycarbonate)
 - Amorphous highly transparent thermoplastic with properties of high impact strength, low moisture adsorption, good heat resistance, good rigidity and electrical properties, and high creep.
 - PC is a good low frequency and high voltage insulator, making it suitable for electrical and electronic components.
 - PCs are graded by addition of various amounts of glass fibers. These increases tensile strength, stiffness, compressive strength, and lowers the thermal expansion coefficient.

General and Plastic Surgery...

- Craniofacial implants made from PEEK polymers with EOS' laser sintering process.
 - Implants with patient-specific size and shape can be manufactured, based on three-dimensional imaging techniques like computed tomography (CT) and magnetic resonance tomography (MRT).

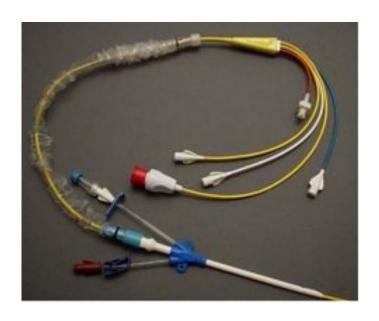


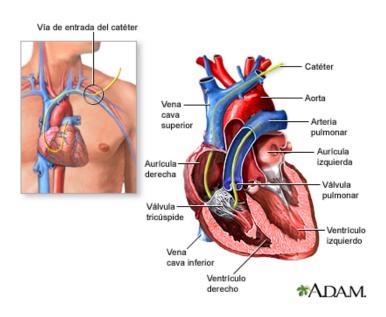
- Poly(ether ether-ketone) (PEEK)
 - Semi-crystalline thermoplastic with excellent chemical resistance, very low moisture absorption, and is unaffected by continuous hot steam or water
 - Graded based on its filler. Unfilled PEEK is light brown or black and is FDA approved for contact with food. Glass filled (30%) PEEK reduces expansion and increases the flexural modulus.

$$\begin{array}{c} \\ \\ \\ \\ \\ \end{array}$$

General and Plastic Surgery...

- Parker's disposable silicone laryngeal mask device.
 - 100% medical-grade silicone device enables easy insertion and is designed to produce an effective seal.

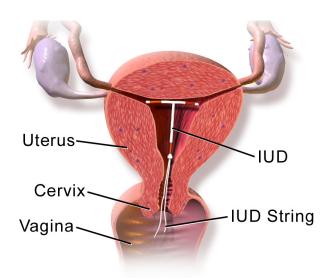



- Poly(dimethyl siloxane) and Trimethylsilyloxy end-blocked polydimethylsiloxanes.
 - Silicones have excellent biocompatibility and biodurability.
 - Flexible with lower tensile strength or tear resistance compared to polyurethanes.
 - Degrade in strongly acidic or basic environments.
 - Like all hydrophobic materials they become quickly coated with proteins when placed in tissue contact.
 - Silicone gels are used for breast, testicular and other soft tissue implants.
 - Silicone adhesives are used in bonding and soft skin adhesives to the skin.

$$\begin{array}{c}
CH_{3} \\
CH_{3} - \stackrel{\mid}{Si} - O - \begin{pmatrix} CH_{3} \\ \stackrel{\mid}{Si} - O \\ CH_{3} \end{pmatrix} \stackrel{\mid}{-Si} - CH_{3}, \\
CH_{3} - \stackrel{\mid}{Si} - O - \begin{pmatrix} R \\ \stackrel{\mid}{Si} - O - \\ R \\ \text{"siloxane"} \end{pmatrix}$$
and if R is CH₃,
$$- \begin{pmatrix} CH_{3} \\ \stackrel{\mid}{Si} - O - \\ CH_{3} \end{pmatrix}_{n}$$
"polydimethylsiloxane"
$$(n = 0, 1, \dots)$$

Hematology...

Pulmonary artery catheter



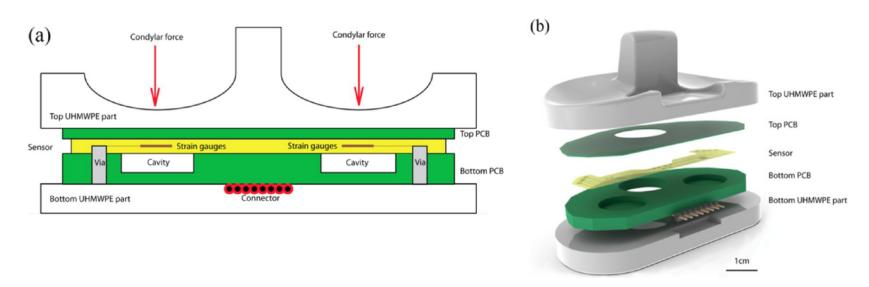
<u></u>		
	Intrauterine Device (IUD)	
Obstetric and gynecologic	Intravaginal Rings	
	Etonogestrel-releasing	Silicone
	Contraceptive Implant	Polyurethane
	Urogynecologic Surgical Mesh Implants	Polypropylene
	Fetal micro-pacemaker	
	Dexamethasone Intravitreal Implant	
	Retinal Prothesis	Polymethylmetacrylate
Ophthalmic	Artificial Intraocular lens	Polyethylene
Орпшанно	Glaucoma valve	Polytetrafluoroethylene
	Fluocinolone Opthalmic Implant	Polyamide
	Orbital Implant	
	Catheters	
		Polyethylene
Orthopedic	Orthopedic implants	Polyether Ether Ketone
		 Polyhydroxyalkanoates

Teo, AJT. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomaterials Sci. Eng. 2016, 2, 454–472

Obstetrics and Gynecology...

Intrauterine device for contraception.

Orthopedic...


 The Taylor Spatial Frame is an external fixator used to treat complex fractures and bone deformities

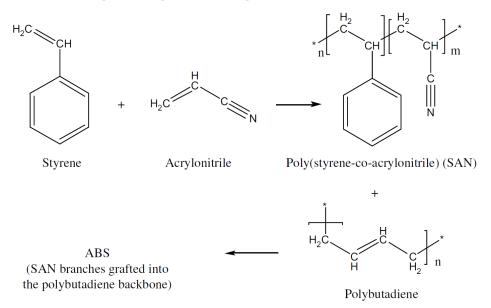
Prof. Steven S. Saliterman From Wikimedia Commons

Orthopedic...

 Knee implant study device with stain gages made from UHMWPE.

Forchelet, D.; Simoncini, M.; Arami, A.; Bertsch, A.; Meurville, E.; Aminian, K.; Ryser, P.; Renaud, P. Enclosed Electronic System for Force Measurements in Knee Implants. Sensors 2014, 14 (8), 15009–15021.

- Polyethylene (PE)
 - Semi-crystalline material with good resistance to organic solvents, degreasing agents, and electrolytes.
 - It is resistance to wear, fatigue, and staining; and has low moisture absorption. PE is nontoxic and floats on water.
 - Graded as low density (LDPE), high density (HDPE) and ultrahigh molecular weight (UHMWPE). The latter are selflubricating, shatter resistance, machinable, and may be sterilized in steam


*
$$\begin{bmatrix} H_2 \\ C \end{bmatrix}$$
 * $\begin{bmatrix} H_2 \\ H_2 \end{bmatrix}$

Orthopedic...

- Intraoperative wrench tool
 - ABS-M30i works with 3D FDM Technology to build functional prototypes, tooling and production parts that can be gamma or EtO sterilized.

- Poly(acrylonitrile-co-butadiene-co-styrene) (ABS)
 - ABD is strong & light weight.

Summary

- FDA Medical Device Categories
 - Anesthesiology
 - Cardiovascular
 - Dental
 - Ear, Nose & Throat
 - Gastroenterology & Urology
 - General and Plastic Surgery
 - Hematology & pathology
 - Obstetrics and Gynecology
 - Ophthalmology
 - Orthopedics