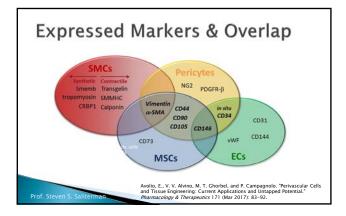

Perivascular Cells

Prof. Steven S. Saliterman

Department of Biomedical Engineering, University of Minnesota http://saliterman.umn.edu/

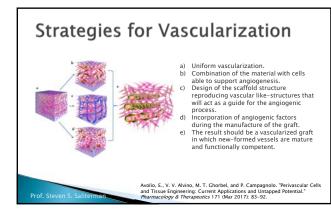
1

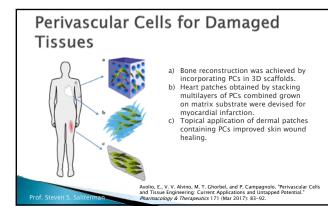
Pericytes


- Pericytes have stem cell-like properties and are seemingly able to differentiate into adipocytes, chondrocytes, osteoblasts and granulocytes, leading them to be identified as mesenchymal stem cells (MSCs).
- They increase ECs proliferation/survival and migration.
- They release a large variety of GFs and cytokines.
- They may accelerate wound healing.
- There are several markers, none unique, and vary with location and time.

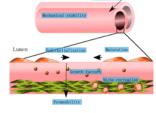
Mills, S. J., A. J. Cowin, and P. Kaur. "Pericytes, Mesenchymal Stem Cells and the Wound Healing Process." *Cells* 2, no. 3 (2013): 621-34.

Prof.	Steven S. Saliterman	


<section-header><section-header><section-header>



Pericytes and seame	Strategy of Indation	Pharmotype to culture	Ow whether Structure	Bediversars.
Saplamaan onin pertoptes (SVPs), trom aphenous intin	(204+i221) – magartic brad selection	Autore NG2 (GGRQ), CD44 (298), GT19, GT13, VMENTIN Nigative CD546, CD45, GT11	Stabilization control, blood vesori premodality, blood premare, van sligpræch, angioprecht; Physiological pathological repair process	Campagnalu et al. (2014)
Caniliar periopie associated (DN), None recessital atmospheriolice	(2014 + 62211 - magnetic fixed arkestans	Auther: NC2, PDOT82, CD44, CD98, CD105, CD17) Negative: CD146, CD46, CD13	Angeogeneem, ICM printein secretion.	Ande, Robigues Autoria et.d. (2013)
Mpscandial pericytes (MPs), Boon Seal what begins	(D) 46 4. (D) 4 - (D) 5 - (D) 6 - (D) 17 - Pharman athlated off setting	Postive: NC3, FOC785, CD44, CD90, CD105, CD13, VIMEWER, CD144, Negative: CD14, CD45, CD14	Appropriate sacular persolability control: blood flow regulation; emplose benchmen: ECM protein surveitan.	Om et al. (2011)
Shelistad musicle participes (ShPu), from Shelistad musicle	(Di-Hogs.(D)4 - Reservent activated off sering	Parities (2014) Negative (2014, (2045, (20144, (2016, (2011)	Myogenic potential, Bale to essectle sottageng and regeneration; Promate assembling of new squedutore in sketest essectle. Control of HBB intentity.	Criser et al. (2018)
Brain perkyter (BPc), from brain micro-acciliatory	Comp and receptulogy	Partier POCPES in SMA, SCS, RCD, MIRCLI Negative CDO, vWF	Ingulation of microsonal architecture; ICM protein secretise; Regulation of capitary featurity and blood flow; Phagocyte functions	Brachard et al. (199 Weikler, BrE, and Johnny (2011)
	Density grade st			Predman and Ball (1987): Manufacture
Low prices (3h) from beguts trave	or Phonesenet sorting based on endogeneous entited or Liver explane surgements	Patter o SMA, N2, DENRI, CHP	Bettud mangoot and stronger, TGPs-dependent ECM explaintee; Angeogenetic and strandard researching.	al. (2000) Biarrigreetid et al. (2000) Tution et al. (2004) Biardonae (2006)
Devilat pulp-pericytes (DPPv), from devical pulp	11301 + magnetic load selection	Painter (180-1, 02146, 363, o-5MA Negative vWF	High possible alor potential. Regeneration of monocalized structure as basis and destin. Support hermosposies.	UK and Groothes (2011) Alize Lahr et al. (2011)



3

Role of Perivascular Cells in TE Grafts

- The seeding of vascular grafts with perivascular cells increases their contractility and mechanical properties, regulating permeability.
 The release of growth factors by the perivascular cells regulates endothelialization and endothelial cell function
- Additionally, perivascular cells contribute to the reconstitution of the perivascular niche, favoring the long-term graft success.

Avolio, E., V. V. Alvino, M. T. Ghorbel, and P. Campagnolo. "Perivascular Cells and Tissue Engineering: Current Applications and Untapped Potential." *Pharmacology & Therapeutics* 171 (Mar 2017): 83–92.

Summary

- > Pericytes have stem cell-like properties and are mesenchymal stem cells.
- They promote vessel growth and stability.
- May in the future be useful for vascular graft repopulation, and skeletal and cardiac muscle grafts.
- May be an alternative to bone marrow mesenchymal stem cells (BMSCs) for bone regeneration.