
Piezoelectric Patch & Pump for Drug Delivery in Tumors

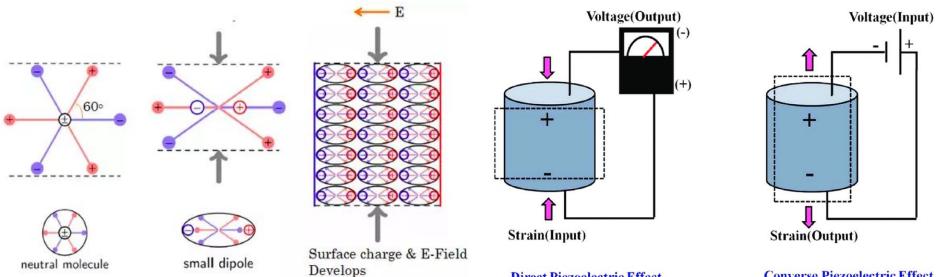
BMEn 5151 Final Project April 23, 2020 Philip, Anthony, Gregory, and Coralie

Purpose of the Device

- Drug delivery to inoperable tumors
 - Using a patch coupled with drug delivery to shrink tumors that can't be removed such as spinal tumors, or tumors integrated with necessary blood vessels
- Application especially to tumors that are accessible but poor vascularity for drug delivery through the blood
- Growth specific drug delivery
 - Reduce the excess chemotherapy delivered and focus it on the parts of the tumor that are growing

Overview of Piezoelectric Materials

- Many materials display this characteristic
 - Natural: Cane sugar, quartz, topaz
 - Artificial: barium titanate and lead zirconate titanate
- Two different pathways exists for the properties of these materials to be exploited for engineering purposes
- Direct Piezoelectric effect (discovered first)
 - Mechanical strain produces voltage
- Indirect Piezoelectric effect


[10]

- External electric field produces strain

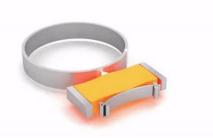
https://www.worldatlas.com/articles/quartz-facts-geology-of-the-world.html

Molecular representation of direct piezoelectric effect. Reverse effect occurs from asymmetric displacement of anions and cations.

Direct Piezoelectric Effect

Converse Piezoelectric Effect

Illustrating direct and indirect effect. Voltage output and strain output directly proportional to their respective inputs.


https://www.researchgate.net/figure/Direct-and-converse-piezoelectric-effect fig2 329228323

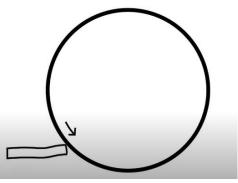
What is it Good For?

- Direct effect equips material with an intrinsic battery

PI

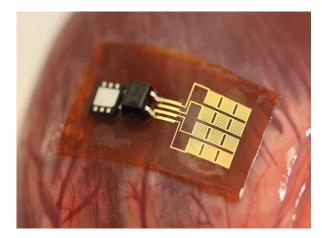
- Indirect effect has many diverse uses
 - Lighters, sensors, printers, speakers, microphones...
- Useful for pumps and motors
 - Many different variations of motors and pumps exist that are driven by piezoelectric materials
 - Rely upon the vibration/deformation of a material to cyclically drive movement

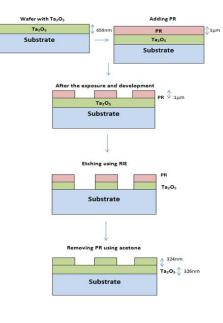



- A visualization taken from a commercial distributor of piezoelectric motors and pumps (PI)
- Ultrasonic rotary motor
 - Excellent control, simple design, readily miniaturized, good holding torque, low temperatures and power consumption

Fabrication

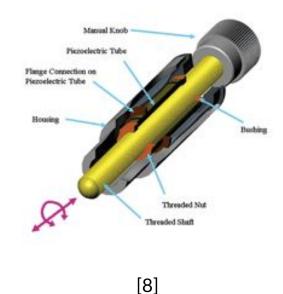
Components:


- Piezoelectric material measuring the tumor growth
- Piezoelectric material converting the growth voltage to motor
- Ultrasonic rotary motor
- Drug storage and emission


PZT Ribbon Fabrication

- Lead zirconate titanate (PZT) for the piezoelectric material
 - Commonly used in medical devices for getting energy[2]
 - Harnesses native movement from body ex. Lungs and heart
- Fabrication process of PZT ribbons with electrodes
 - Top electrode of Au/Cr formed by electron beam evaporator
 - Coat wafer with photoresist and patterned photolithography defines electrode areas
 - Au Cr layers etched with gold etchant
 - PZT ribbons created by wet chemical etching with HNO3, BHF, H20 through a hard baked mask of PR (photoresist) [2]

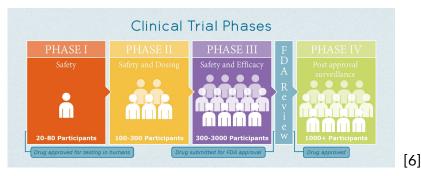
PZT Ribbon Fabrication Cont.

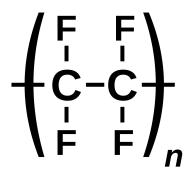

- Hard baking with a sequence of varying temperatures and time
- The bottom Pt/Ti electrode patterned by wet chemical etching with HCl, HNO3, and DI water through a hard baked mask
- PZT layers protected by PR during removal of sacrificial layer SiO2 with HF.
- Hard baked photoresist mask removed in an acetone bath [2]
- Transfer to PDMS stamp and conformally contacted top of the ribbons
- Device retrieved by peeling the stamp away from the Si wafer and transferred on a film of PI (polyimide)
- Electrode holes made by patterning with photoresist then using reactive ion etching

[5]

Piezoelectric Motor Pump

- Voltage from PZT ribbon electrodes connected to piezoelectric motor pump
- Voltage to the piezoelectric material in the pump will control the rotor speed
- The higher the speed the more drug administered
- The drug will be dispensed similar to a syringe plunger
- Drug reservoir will be surrounding the device to minimize space




Testing Methods

- Need to test that the device releases drug
 - Create model tumor, place the device onto it and inflate the model tumor
 - This is conducted in solution with an indicator for the chosen drug
 - Can use this method to measure release rate over time
- Need to test that the device releases more drug in correlation with more growth
 - Repeat the above routine with models inflated to different sizes
 - Measure concentrations of indicator over time to analyze drug release rate as well
- Potential in vitro testing using tumor tissue samples as well

Testing Methods Part 2

- Need to test for biocompatibility
 - Conduct tests based on ISO 10993 standards for device biocompatibility [4]
 - Cytotoxicity, device leachability tests, sensitization assay testing, immune response testing
- Clinical Testing
 - Animal studies
 - Determine how much drug/potency needs to be released to shrink actual tumor tissue
 - Human clinical trials

Biocompatibility

- Considerations:
 - Need a good anti-fouling surface
 - Also need a good insulator, since a voltage is created with the piezoelectric material creates a voltage
 - Need general compatibility and durability as well (i.e. non-corroding, non-toxic)
- Fluoropolymer coating such as PTFE (Polytetrafluoroethylene)[9]
 - Good anti-fouling surface
 - Also a good insulator, commonly used in ICD's
 - Nontoxic and commonly implanted
 - Good corrosion and chemical resistance
 - FDA Approved

Limitations

- Small Window of application (i.e. tumors that can be reached surgically, but cannot be removed)
- Sensors cannot discriminate between pressure from the actual tumor or other factors (i.e. movement, infection)
- Can only load with a finite amount of drug, may need to be restocked
- Will require both a careful implant and explant surgery
- Need a base release rate so that drug is still delivered as tumor shrinks

Citations

[1] Thorlabs, Inc. "The Elliptical Technique of the Piezo Resonant Motor" Thorlabs June 2017.

[2] The American Ceramic Society. "PZT Flexible Thin Films for Biologically Powered Medical Devices

[3] Murillo et al. "Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump converter for CMOS-MEMS Monolithic Integration

[4] Pacific BioLabs. "Biocompatibility."

[5] Murugaiya et al. "Etch Process Development of Tantalum Pentoxide Using Photoresist" Researchgate. Mat 2013

[6] IDL Collective. "Clinical Trial Phases" https://www.ildcollaborative.org/resources/phase-iii-ipf-clinical-trials

[7] Spine Physicians Institute. "Spinal Tumors Overview." https://spinephysiciansinstitute.com/conditions-view/spinal-tumors/

[8] Fred Haas "Tiny Piezoelectric Motor Enhances Nanoscale positioning" Electronic Products December 2004

Citations Continued...

[9] AFT Fluorotec Limited. "What is PTFE?" AFT Fluorotec.

[10] M. S. Vijaya, Piezoelectric Materials and Devices. Boca Ranton, FL: CRC Press, 2013.

[11] J. Wallaschek, "Piezoelectric Ultrasonic Motors," Journal of Intelligent Material Systems and Structures, vol. 6, no. 1, pp. 76–80, Jan. 1995.

Questions?