
Introductory Medical Device Prototyping

Programming in C

Prof. Steven S. Saliterman, http://saliterman.umn.edu/
Department of Biomedical Engineering, University of Minnesota

Prof. Steven S. Saliterman

Programming

1. Software is the smart in your “smart device.”
2. An algorithm displayed as a flowchart, transforms your problem into

various input, processing, decision and output steps
3. Lines of code are written to implement your algorithm.
4. Code may be written in machine language and/or higher level languages

such as C, C++, and C#.
5. A compiler converts your program into machine language that the

microcontroller understands.
6. The compiled code is then uploaded into a board containing the

microcontroller, memory and various interface circuits.
7. Errors are then fixed by testing and debugging.
8. Rather than a microcontroller board, you might consider a single-board

computer, such as Raspberry Pi, giving you a richer programming,
processing and interface environment.

Prof. Steven S. Saliterman

Programming in C

 The most widely used programming language.
 C was originally developed by Dennis Ritchie between 1969 and

1973 at Bell Labs.
 A structured programming computer language.
 Maps efficiently to machine instructions, largely replacing previous

assembly language programing.
 Uses range from embedded systems to supercomputers.
 Standardized by the American National Standards Institute (ANSI)

since 1989.
 Low-level access to computer memory is possible by converting

machine addresses to typed pointers.
 Many later languages have borrowed directly or indirectly from C,

including C++, Java, JavaScript, C#, Objective-C, Verilog (hardware
description language), and others.

Author: Denise Panyik-Dale. Dennis Ritchie at
Japan Prize Foundation ceremony in May 2011.

Prof. Steven S. Saliterman

Integrated Development Environment (IDE)…

1. Examples:
 Arduino
 Microchip MPLAB X for PIC
 Microsoft Visual Studio for Windows

2. Editing – Entering the Program Code
3. Compiling – C, C++, C# & or other Languages
4. Running – Executing the Program
5. Debugging – Finding & Correcting Errors

Prof. Steven S. Saliterman

C Variables and Modifiers…

1. Basic Data Types (Compiler Dependent)

1. Char - typically one byte (8 bits or “1 byte”)
2. Int – integer (16 bits)
3. Float – a single precision floating point value (32 bits)
4. Double – a double precision floating value (64 bits)

2. Modifiers
1. Unsigned
2. Short
3. Long

3. Boolean Type – variable is either True or False

Prof. Steven S. Saliterman

Data Types for Arduino (for example)…

1. boolean (8 bit) - simple logical true/false (1 byte = 8 bits)
2. byte (8 bit) - unsigned number from 0-255
3. char (8 bit) - signed number from -128 to 127. The compiler will

attempt to interpret this data type as a character in some
circumstances, which may yield unexpected results.

https://learn.sparkfun.com/tutorials/data-types-in-arduino

4. unsigned char (8 bit) - same as ‘byte’; if this is what you’re after,
you should use ‘byte’ instead, for reasons of clarity.

5. word (16 bit) - unsigned number from 0-65535 (1 word = 2 bytes)
6. unsigned int (16 bit)- the same as ‘word’. Use ‘word’ instead for

clarity and brevity

Prof. Steven S. Saliterman

7. int (16 bit) - signed number from -32768 to 32767. This is most

commonly what you see used for general purpose variables in Arduino
example code provided with the IDE.

8. unsigned long (32 bit) - unsigned number from 0-4,294,967,295. The
most common usage of this is to store the result of the millis() function,
which returns the number of milliseconds the current code has been
running.

https://learn.sparkfun.com/tutorials/data-types-in-arduino

9. long (32 bit) - signed number from -2,147,483,648 to 2,147,483,647
10. float (32 bit) or double- signed number from -3.4028235E38 to

3.4028235E38. Floating point on the Arduino is not native; the compiler
has to jump through hoops to make it work. If you can avoid it, you
should.

Prof. Steven S. Saliterman

Program Structure
//Typical Program Structure
#include <stdio.h>
#include <stdbool.h>
int main (void)
{
 int a = 5; //e.g.
 float b; //e.g.
 int val[4];
 _Bool finished=false;
 for (n=1; n<=200; n=n+1) ; //e.g.
 { more statements }
 if (c=4) //e.g.
 { more statements }
 printf; //e.g.
}

// Comment (begins with //)
// Specify standard libraries (one or more)

// Beginning of main program
// Signifies a group of declarations & statements
// Declare global variable and assign a value
// Declaring a floating point value
// Declaring an integer array: val[0], val[1], val[2], val[3]
// Declaring a boolean (true/false or 1/0)
// Loop (also – while, do)

// Conditional (also –if-else, switch, condition)

// Input and output command
// End of main program

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana (2005).

Prof. Steven S. Saliterman

Example Program…

//Add all even numbers from 0 to 100
#include <stio.h>
int main (void)
{
 int sum = 0, n;
 for (n = 0; n <= 100; n = n+2) ;
 {
 sum = sum + n;
 }
 printf (“The sum is: ”, sum);
}

// Program Title
// Include standard input and output libraries
// Beginning of main program

// Declare “sum” and “n” as integers
// Loop, incrementing n from 0 to 100, by 2 each time

// Add previous sum to present n

//Loop is done – print the final sum

Prof. Steven S. Saliterman

Relational Operators…

Operator Meaning Example
 == Equal to count == 10
 != Not equal to person != cat
 < Less than a < b
 <= Less than or equal c <= e
 > Greater than d > 7
 >= Greater than or equal j >= k

Prof. Steven S. Saliterman

Arithmetic Expressions…

Operation Operator Symbol
Addition +
Subtraction -
Multiplication *
Division /
Power e
Precedence * or /, then + or – // parenthesis promotes ()
Modulus % gives the remainder
Combining Operator
 with Assignment e.g. count += 10; //same as: count = count +10;
 ++count; //increments count by 1

Prof. Steven S. Saliterman

Implicit Conversions…

1. Whenever a floating-point value is assigned to an integer, the
decimal portion is truncated.

2. Assigning an integer value to floating point variable does not
change the value.

3. Whenever two operands in an expression are integers, the
operation is carried out under the rules of integer arithmetic.
Decimal portions are lost even if assigned to a floating point
variable.

4. Any operation between two values is performed as a floating
point operation if either value is a floating point constant or
variable.

5. Type Cast Operator e.g. (int) or (float) preceding the value
converts the value for the purpose of the calculation only.

Prof. Steven S. Saliterman

Program Statements

 Loop Statements
 For
 While
 Do-While

 Decision Statements
 Break and Continue
 If
 If-Else
 Switch-Case

Prof. Steven S. Saliterman

“For” Statement (a Loop)…

for (initialization; condition; increment)
 {program statement(s);}

Example – What is the value of the a[49] element?
 …
 int a[100];
 for (int n = 0; n < 100; n = n + 1)
 {
 a[n] = n * 2;
 }
 …

Statement Format

Example Code

Prof. Steven S. Saliterman

“While” Statement (a Loop)…

while (expression – a boolean that is true or false)
 {program statement(s);}

Example – What is the value of a[30] element?
 …
 int a[100];
 int n = 0;
 while (n < 100) {
 a[n] = n * 3;
 n = n + 1; // Could also use
 “++n”
 }
 …

Prof. Steven S. Saliterman

“Do-while” Statement (a Loop)…

do
 {program statement(s)}
while (test condition);

Example – What is the value of a[75] element?
 …
 int a[100];
 int n = 0;
 do {
 a[n] = n * 4;
 n = n + 1;
 }
 while n < 100;
 …

Prof. Steven S. Saliterman

“Break” and “Continue”…

break;
Based on a conditional statement, the action will be to leave the
loop (or the present loop if nested).

continue;
Causes the loop in which it is executed to skip ahead to the next
cycle of the loop. Any statements after the “continue” within the
loop are ignored.

Prof. Steven S. Saliterman

“If” Statement (a Decision)…

if (expression)
 {program statements;}

Example – What is the value of n?
 …
 int a = 4, n = 0;
 if a <= 5 {
 n = n + 50;
 }
 …

Prof. Steven S. Saliterman

“If-Else” Statement (a Decision)…

if (expression)
 {program statements;}
else
 {program statements};

Example – What is the value of n?
 …
 int a = 10, n = 0;
 if a <= 5 {
 n = n + 50;
 }
 else {
 n = n + 25;
 }
 …

Prof. Steven S. Saliterman

“Switch – Case” Statement…

switch (expression)
{
 case label1:
 program statements;
 break;
 case label2:
 program statements;
 break;
 default:
 program statements;
 break;
}

For example:

int a;
_Bool buy;
…
a = 2;
switch (a)
{
 case 1: // if a =1
 buy = true;
 break;
 case 2: // if a =2
 buy = false;
 break;
}
…

Prof. Steven S. Saliterman

Case Statement Rules…

1. Case label must be unique.
2. Case labels must ends with colon.
3. Case labels must have constants / constant

expression.
4. Case label must be of integral Type (Integer,

Character), e.g. 10, 10+2, ‘j’.
5. Case label should not be ‘floating point number. ‘
6. Switch case should have at most one default label.
7. Default label is Optional.
8. Default can be placed anywhere in the switch.

Prof. Steven S. Saliterman

9. Break statement takes control out of the switch.
10. Two or more cases may share one break statement.
11. Nesting (switch within switch) is allowed.
12. Relational Operators are not allowed in Switch

Statement.
13. Macro Identifier are allowed as Switch Case Label.
14. Const Variable is allowed in switch Case Statement.
15. Empty Switch case is allowed.

Prof. Steven S. Saliterman

Conditional Operator

condition ? expression1 :
expression2

Usually condition is a relational
expression.

If TRUE, then expression1 is
evaluation, if FALSE then
expression2 is evaluated.

For example:

int s, x
…
s = (x < 0) ? -1 : x* x

 So, if x < 0 then ‘s’ equates to -1,
otherwise ‘s’ equates to x2

Prof. Steven S. Saliterman

Arrays

1. The first element is indexed with zero, e.g. a[3] has 3
elements, a[0], a[1], and a[2].

2. Declare as usual, e.g. int a[3], float a[3], and char a[3].
3. Initialize: int a[3] = {2, 6, 1}.
4. Ok to initialize using a “for” loop.
5. If number of elements is not stated, the initialization will

determine it, e.g. int a[] = {2, 6, 1} – elements will be three.
6. Arrays may be multidimensional, e.g. a[3, 5].
7. Two dimensional (rows and columns) can also be written, e.g.

int M[4] [5] (remember there is a zero row and column).
8. Number of elements may be determined by variable – in which

case range check first.

Prof. Steven S. Saliterman

Functions
 A group of statements called by your

main program or another function.
 Key words – void, argument, formal

parameter and local variables.
 “void” specifies that the function does not

return a value.
 Arguments are values passed to the

function.
 Formal parameter is the declared

variable in the function that refers to the
argument passed to it.

 Local variables are declared and exist
only in the function.

 Multiple arguments are permitted.
 Recursive - functions may call

themselves. Conceptualize as calling a
new function (new local variables).

For example:

#include <stdio.h> // include library

void circumference (float radius) // function
{ float cir; // local variable
 cir = (2 * 3.1415 * radius);
 printf (…, cir); // print result
}

int main (void) // main program
{ …
 circumference (10.5); // function call 0
 …
}

Prof. Steven S. Saliterman

Returning Function Results…

 return expression indicates that
the function is to return to the
value of expression.

 You must declare the type of
value the function will return.

 In the example, the function
circumference is called with the
argument 8.4, and the value
returned is result.

For example:

#include <stdio.h> // include library

circumference (float radius) // function
{float circ; // local variable
 circ = (2 * 3.14 * radius);
 return circ
}

int main (void) // main program
{float result
 …
 result = circumference (8.4); // function call
 …
}

Prof. Steven S. Saliterman

Global and Static Variables

1. Global variables have initial value of zero even
arrays. Local variables must be explicitly
initialized.

2. Although global variables reduce the number of
arguments that need to be passed to a
function, they decrease readability. It is not
clear what the function needs as input or
produces as output.

Prof. Steven S. Saliterman

Automatic & Static Variables…

 Local variables in a function
are also called automatic
variables, meaning they do
not retain their value upon
leaving the function.

 Static variables do not come
and go as the function is
called. It will have the same
value returning to the
function as it had when it left.

 Static Variables will have a
default value of zero.

Static variable example:

#include <stdio.h> // include library

circumference (float radius) // function
{ static int itemschecked ; // local variable
 float circ;
 cir c= (2 * 3.14 * radius);
 ++itemschecked;
 return circ
}

int main (void) // main program
{float result
 …
 result = circumference (8.4); // function call
 …
}

Prof. Steven S. Saliterman

Structures

1) Similar to an array element, a
structure has members.

2) A structure is defined, and then
variables are declared of that type.

3) The variable name and its members
are separated by a period.

4) Assign values to each member.
5) Assignment can be done in a single

line using compound literals.

For example:

#include <stdio.h> // include library
…
int main (void)
{
 struct date // defining a new structure type date
 {
 int month; // members of the structure
 int day;
 int year;
 };
…
struct date today; // declaring variable today of type struct date

today.month = 7 ; // values of the variables of today*
today.day = 23;
today.year = 2016;
…
return = 0;
}
 // *could also initialize as: struct date today = {7, 23, 2016};
 or today = (struct date) {7, 23, 2016};
 or today = (struct date) { .month = 7, .day = 23, .year = 2016};

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana (2005).

Prof. Steven S. Saliterman

Structure Rules..

1. Structure members may be used in expressions just as any other
variable.

2. Define ahead of your functions, making them global.
3. Structures may be passed as arguments.

 Any changes made by the function to the values contained in a
structure argument have no effect on the original structure.

4. Members may be other structures or arrays.

Prof. Steven S. Saliterman

Character Strings
1. Double quotation marks are used to delimit a character string: e.g.

“Hello world!”
2. Recall the type char, and declaration: e.g. char n, and assignment n =

‘t’ (or any other character we would like), in single quotations.
3. Any combination of letters, numbers or special characters may be

used.
4. Consider an arrays of characters:

 char phone []={ ‘P’, ‘h’, ‘o’, ‘n’, ‘e’};
5. Alternatively this could be written as:

 char phone [] = {“Phone”}; (curly brackets are optional).
6. If you explicitly size the array, add one place at the end for the null

character. This character is automatically appended to the end of a
string to signal to the compiler that the string has ended.

 char phone [6] = “Phone”;

Prof. Steven S. Saliterman

7. There are various programs you can write to accomplish the
following:

 Concatenating two string.
 Determining the number of characters in a string.
 Testing for the equality of two strings.

Prof. Steven S. Saliterman

Pointers

Data items with
potentially
large memory
allocation.

Smaller memory
allocation – easier
to work with.

Arrays

Pointer
to an int,

e.g. myPointer

Assigning the pointer
to a variable, e.g. x

Prof. Steven S. Saliterman

Indirect Operator * and Address Operator &…

1. A pointer allows you an
indirect means of
accessing the value of a
particular data item.

2. The indirection operator, *,
defines the variable
myPointer as a type
pointer to int.

3. The address operator, &,
is used to make a pointer
to count.

#include<stdio.h>;
int main (void)
{
 int count = 10;
 int *myPointer; // declaring a pointer to a int
 myPointer = &count; // set the pointer to count
 x = *myPointer; // assigning the pointer to x
 printf (“count = %i, x = %i/n”, count, x);
 return 0;
}

Output: count = 10, x = 10 (we will discuss printf
 formatting later)

Prof. Steven S. Saliterman

Pointer Example…

#include <stdio.h>
int main (void)
{
 char c = ‘Q’; // Assign ‘Q” to a new char variable c
 char *myPointer = &c; // Declare myPointer as a pointer to char, then set it to c.

 printf (“%c %c\n”, c, *myPointer); // Output will be Q Q

same as:
 char *myPointer;
 myPointer = &c;

c = ‘/’; // Assign “/” to the char variable c
 printf (“%c %c\n”, c, *myPointer); // Output will be //

 *char_pointer = ‘(“; // Assign “(” to the char variable c
 printf (“%c %c\n”, c, *myPointer); // Output will be ((

 return 0;
}

Prof. Steven S. Saliterman

More than One Pointer…

Arrays

Pointer
to an int,

e.g. myPointer

Assigning the pointer
to a variable, e.g. x

Another pointer
can also point to
the same data

Prof. Steven S. Saliterman

Pointer to a Structure…

Array

Pointer
to a struct

Assigning the pointer
to a variable

Prof. Steven S. Saliterman

Example of a Structure Pointer…

#include<stdio.h>
int main (void)
{
 struct date
 {
 int month;
 int day;
 int year;
 };

 struct date today, *datePtr; //today is type struct, and *datePtr is a pointer to struct
date

 datePtr = &today; //setting datePtr to point to today

 datePtr -> monthly = 9; //same as saying (*datePtr).month = 9
 datePtr -> day = 25;
 datePtr -> year = 2004,

 printf (“Today’s date is %i/%i/%.2i.\n”,
 datePtr -> month, datePtr -> day, datePtr -> year % 100);
 return 0;
}
Output: Today’s date is 9/25/04.

Kochan, S.G. Programming in C, 3rd ed., Developer’s Library, Indianapolis, Indiana (2005).

Prof. Steven S. Saliterman

Preprocessor Command: #define

 #define - assigns symbolic names to a constant
 e.g. #define CARD 6 – defines the name card and

assigns a value of 6. (Capitalized is optional)
 Anywhere (except in a character string) that ‘card’

is used, it will be substituted by the value 6.
  May appear anywhere in the program.

 Examples: #define PI 3.1415926, #define
TWO_PI 2.0 * 3.1415926, #define AND && ,
#define OR ||, or #define EQUALS ==.

Prof. Steven S. Saliterman

 #define is also known as a macro because it can
take an argument like a function.

 e.g. #define SQUARE(x) x*x
 y = SQUARE (v); //v2 is assigned
 to y
 The type of the argument is unimportant.
 Becomes resident in the program (more

memory but faster execution).

Prof. Steven S. Saliterman

… and #include

 A method of grouping all of your macros together into a
separate file, then including them into your program.
Typically placed at the beginning. Examples: <stdio.h>,
<float.h>, <limit.h>

 These files end with .h

 May be contained in a libraries folder when working with
Arduino and other microcontrollers.

 Placing in < > tells the compiler to look for the file in a
specific location.

 Once created, they can be used in any program.

Prof. Steven S. Saliterman

Summary

 Flowchart a problem for easier coding
 Relational operators and arithmetic expressions
 Variables and data types
 Statements

 Loop statements – for, while, do
 Decision statements – if, if-else, switch-case

 Arrays
 Functions
 Structures
 Pointers
 Preprocessor Commands

	Slide Number 1
	Programming
	Programming in C
	Integrated Development Environment (IDE)…
	C Variables and Modifiers…
	Data Types for Arduino (for example)…
	Slide Number 7
	Program Structure
	Example Program…
	Relational Operators…
	Arithmetic Expressions…
	Implicit Conversions…
	Program Statements
	“For” Statement (a Loop)…
	“While” Statement (a Loop)…
	“Do-while” Statement (a Loop)…
	“Break” and “Continue”…
	“If” Statement (a Decision)…
	“If-Else” Statement (a Decision)…
	“Switch – Case” Statement…
	Case Statement Rules…
	Slide Number 22
	Conditional Operator
	Arrays
	Functions
	Returning Function Results…
	Global and Static Variables
	Automatic & Static Variables…
	Structures
	Structure Rules..
	Character Strings
	Slide Number 32
	Pointers
	Indirect Operator * and Address Operator &…
	Pointer Example…
	More than One Pointer…
	Pointer to a Structure…
	Example of a Structure Pointer…
	Preprocessor Command: #define
	Slide Number 40
	… and #include
	Summary

